Research overview

Akifumi Okuno's research concern encompasses the following four topics
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statistical machine learning (computation),
scientific collaborations (application),
mathematical statistics (theory),

feature learning (visualization/data integration).
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A: statistical machine learning (computation)

Okuno and Yano (JCGS2023) studies a singular model extension of information
criterion (called WAIC) applied to overparameterized models (p > n) including

neural networks. It also proposes a Langevin-based computation, which can be

implemented by existing tools (such as PyTorch) very simply.
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A: statistical machine learning (computation)

Okuno (arXiv:2308.02293v2) proposes a stochastic approach to train non-linear
neural networks with higher-order variation regularization. It can be applied to
general regression models including deep neural networks.
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A: statistical machine learning (computation)

Okuno and Yagishita (arXiv:2308.02293v3) employs the variation regularization
shown in the previous slide, to robustly train the neural network using trimmed loss.
Convergence of stochastic gradient-supergradient descent (SGSD) is also proved.
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A: statistical machine learning (computation)

Okuno (AISM2024) proposes a stochastic approach to minimize robust divergences.
It can be applied to general density models by receiving the unique benefit of
stochastic outcomes, while the previous deterministic approaches can estimate only
the severely restricted models (such as normal density).
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A: statistical machine learning (computation)

Okuno and Harada (JCGS2024) proposes a non-parallel ordinal regression model
using neural networks. While existing approaches employ rather heuristic ways to
preserve the monotonicity for the prediction model, it theoretically provides a
sufficient condition to preserve the monotonicity.
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B: scientific collaborations (application)

Okuno and Hattori (arXiv:2204.08205) proposes an optimistic approach to
clustering celestial bodies whose observations include large uncertainty. Subsequently,
Hattori, Okuno, and Roederer (Astrophysical Journal 2023) applies it to real-world
observations and obtains plausible results.
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B: scientific collaborations (application)

Okuno, Morishita, and Mototake (IEEE Access 2024) proposes estimating a slack
time-series for the forecasting of dynamical time-series. This very first paper of our
project has been launched with the application to fusion plasmas in mind.
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B: scientific collaborations (application)

Further extending Okuno, Kodahara, and Sasaki (Physics and Fusion Research:
Rapid Communications 2024), Okuno and Sasaki (Physics of Plasmas 2025)
proposes a systematic approach to decompose numerical plasma turbulence field.
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C: mathematical statistics (theory)

Okuno and Imaizumi (EJS2024) proves the minimax rate for the estimation of
invertible functions, which have been actively developed in the field of artificial

intelligence (generative models). It also provides an example estimator that achieves
this minimax optimality.
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C: mathematical statistics (theory)

Okuno and Shimodaira (NeurlPS2020) proves that an imaginary O-nearest neighbor
estimator corrects the higher-order bias and attains the minimax optimality. In
contrast to the local polynomial regression estimator, its applicable range is broader
as it can be computed with only the radial distance.
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C: mathematical statistics (theory)

Okuno and Yano (SPL2023) theoretically proves that the asymptotic variance of link
prediction problems depends on the covariate design. Although general audiences
may not be familiar, this result is surprising as the covariate design was proved not to
influence the asymptotic behavior for many problems (including usual regression).
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C: mathematical statistics (theory)

Okuno (arXiv:2311.12380) proposes a multivariate direct kernel estimator for density
ratio. It is a multivariate extension of the univariate estimator proposed by Cwik and
Mielniczuk (1989), which is defined without computing the two densities of interest.
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C: mathematical statistics (theory)

Okuno (arXiv:2407.10418) discusses the bias-variance trade-off that arises between
robust optimization and robust statistics, highlighting that so-called "robust"
methods serve distinct purposes.
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D: feature learning (visualization/data integration)

Okuno, Hada, and Shimodaira (ICML2018) proposes a probabilistic framework to
integrate different types of data (texts, images,...) using their graph-structured
associations (e.g., tagged information). It is further extended to hyper-relations in
Okuno and Shimodaira (Neural Networks 2020).
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D: feature learning (visualization/data integration)

Okuno, Kim, and Shimodaira (AISTATS2019) proposes more expressive models for
neural network-based graph embedding, which reduces the dimension of data vectors
having a graph-structured associations. Subsequently, Kim, Okuno, Fukui, and
Shimodaira (IJCAI2019) further extends its result.
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D: feature learning (visualization/data integration)

Mizutani, Okuno, Kim, and Shimodaira (arXiv:2005.00670) extends t-stochastic
neighbor embedding (t-SNE) to heterogeneous data vectors (i.e., different types of

data having graph-structured associations).
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