
Graph Embedding with Shifted Inner Product Similarity
and Its Improved Approximation Capability

(Slides � http://okuno.co/fimi.pdf)
to appear in AISTATS2019 (arXiv:1810.03463)
Joint work with H. Shimodaira and G. Kim

Akifumi Okuno

Kyoto University and RIKEN AIP

http://okuno.co/fimi.pdf
https://arxiv.org/abs/1810.03463

Purpose of this study

Purpose of this study is clarifying

expressive power
of neural network-based graph embedding (GE),
and propose

more expressive GE.

© Akifumi Okuno 3

Given dataset

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

(0,0,1)
(1,0,0)

(1,0,2)

• Link weights wij ≥ 0: co-authorship relation
• Data vectors xi: number of publications in each journal.

© Akifumi Okuno 4

Summary of this study

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

Embedding

Neural networks

Observed data vectors Obtained feature vectors

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

𝑦1
𝑦2

𝑦3

𝑦4

𝑦5

Graph embedding learns a transformation f : X → Y , so that
wij ≈ Sigmoid(g(yi, yj)︸ ︷︷ ︸

“Similarity”

), yi := f(xi).

g is specified as inner-product (Tang et al., 2015), Poincaré-dist. (Nickel and
Kiela, 2017), etc..

Question �What kind of kernel g is good (in terms of the expressive power?)
Answer � Proposed shifted inner-product similarity (SIPS).

SIPS can approximate many kernels, e.g., Poincaré-distance!

© Akifumi Okuno 5

Related publications

Today’s talk is based on

• Okuno, Kim, and Shimodaira. "Graph Embedding with Shifted Inner Product
Similarity and Its Improved Approximation Capability," arXiv:1810.03463, to
appear in AISTATS2019,

that is an extended version of

• Okuno and Shimodaira. "On representation power of neural network-based
graph embedding and beyond," arXiv:1805.12332, ICML2018 workshop on
TADGM.

We recently submitted a preprint that proposes a new similarity.

• Kim, Okuno, Fukui, and Shimodaira. "Representation Learning with
Weighted Inner Product for Universal Approximation of General Similarities,"
arXiv:1902.10409 , submitted.

© Akifumi Okuno 6

http://arxiv.org/abs/1810.03463
https://arxiv.org/abs/1805.12332
http://arxiv.org/abs/1902.10409

Table of contents

1 Introduction: Graph Embedding with Data Vectors
Formulation: Graph Embedding with Data Vectors
Existing Graph Embedding Methods
Examples: Graph with Data Vectors

2 PD and CPD similarities (AISTATS2019)
Poincaré Embedding
Inner-Product Similarity (IPS)
Shifted Inner-Product Similarity (SIPS)
Numerical Experiments

3 Recent Progress: General Similarities (arXiv:1902.10409)
Non-CPD Similarities
Inner-Product Difference Similarity (IPDS)
Weighted Inner-Product Similarity (WIPS)
Numerical Experiments

4 Conclusion

© Akifumi Okuno 7

Table of contents

1 Introduction: Graph Embedding with Data Vectors
Formulation: Graph Embedding with Data Vectors
Existing Graph Embedding Methods
Examples: Graph with Data Vectors

2 PD and CPD similarities (AISTATS2019)
Poincaré Embedding
Inner-Product Similarity (IPS)
Shifted Inner-Product Similarity (SIPS)
Numerical Experiments

3 Recent Progress: General Similarities (arXiv:1902.10409)
Non-CPD Similarities
Inner-Product Difference Similarity (IPDS)
Weighted Inner-Product Similarity (WIPS)
Numerical Experiments

4 Conclusion

© Akifumi Okuno 7

Table of contents

1 Introduction: Graph Embedding with Data Vectors
Formulation: Graph Embedding with Data Vectors
Existing Graph Embedding Methods
Examples: Graph with Data Vectors

2 PD and CPD similarities (AISTATS2019)
Poincaré Embedding
Inner-Product Similarity (IPS)
Shifted Inner-Product Similarity (SIPS)
Numerical Experiments

3 Recent Progress: General Similarities (arXiv:1902.10409)
Non-CPD Similarities
Inner-Product Difference Similarity (IPDS)
Weighted Inner-Product Similarity (WIPS)
Numerical Experiments

4 Conclusion

© Akifumi Okuno 7

Table of contents

1 Introduction: Graph Embedding with Data Vectors
Formulation: Graph Embedding with Data Vectors
Existing Graph Embedding Methods
Examples: Graph with Data Vectors

2 PD and CPD similarities (AISTATS2019)
Poincaré Embedding
Inner-Product Similarity (IPS)
Shifted Inner-Product Similarity (SIPS)
Numerical Experiments

3 Recent Progress: General Similarities (arXiv:1902.10409)
Non-CPD Similarities
Inner-Product Difference Similarity (IPDS)
Weighted Inner-Product Similarity (WIPS)
Numerical Experiments

4 Conclusion

© Akifumi Okuno 7

Introduction: Graph Embedding with Data Vectors

© Akifumi Okuno 8

Formulation: Graph Embedding with Data Vectors

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

Embedding

Neural networks

Observed data vectors Obtained feature vectors

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

𝑦1
𝑦2

𝑦3

𝑦4

𝑦5

Given

• link weights wij = wji ≥ 0, 1 ≤ i < j ≤ n,
• data vectors xi ∈ X (⊂ Rp), 1 ≤ i ≤ n,

graph embedding (with data vectors) learns a transformation f : X → Y , so that

wij ≈ exp(〈yi, yj〉), yi := f(xi).

exp(·) can be replaced with Sigmoid, or some other functions.

© Akifumi Okuno 9

Existing Graph Embedding Methods

There are (mainly) 3 different types of graph embedding methods.

Spectral
Chung (1997),
Belkin and Niyogi (2003),
He and Niyogi (2004),...

,eigen-decomposition
/computationally hard
/limited to linear

Probabilistic
Mikolov et al. (2013),
Tang et al. (2015),...

,computationally
tractable
,non-linear
,inductive

We employ thismodel.

Convolution
Kipf and Welling (2016),
Kipf and Welling (2017),
Hamilton et al. (2017),...

,computationally
tractable
,non-linear
,graph convolution
/not inductive

© Akifumi Okuno 10

Existing Graph Embedding Methods (Spectral)

We do not consider this model in this study.
Locality Preserving Projections (He and Niyogi, 2004, LPP) learns a
linear-transformation

yi := A>xi.

so that the obtained feature vectors {yi}
n
i=1 maximize

n∑
i=1

n∑
j=1

wij〈yi, yj〉,

under a quadratic constraint
∑n

i=1
∑n

j=1 wijyiy>i = I. LPP reduces to Spectral
Graph Embedding (Chung, 1997) if {xi} is specified as 1-hot vectors.

, can be solved by eigen-decomposition.

/ computationally hard.
/ limited to linear setting.

© Akifumi Okuno 11

Existing Graph Embedding Methods (Probabilistic)

We employ this model in this study.
𝑥𝑖

Input:
Data vector

𝑦𝑖
Output:
Feature vector

𝑓

f : X → Y

Given binary weights wij ∈ {0, 1}, Large-scale
Information Network Embedding (Tang
et al., 2015, LINE) learns a neural network

yi := f(xi),

by assuming a probabilistic model1

wij | xi, xj
indep.∼ Bernoulli

(
σ(〈yi, yj〉)

)
,

where f : X → Y is a neural network (NN). NN
can be trained by maximizing the log-likelihood
for ({wij}1≤i<j≤n | {xi}ni=1) without any constraint.

The log-likelihood can be maximized by stochastic algorithms.
, computationally tractable.
, non-linear.
, inductive, i.e., unseen data vector xn+1 can be transformed.

1This model can be replaced, e.g., Poisson distribution (Okuno et al., 2018).

© Akifumi Okuno 12

Existing Graph Embedding Methods (Convolution)

We do not consider this model in this study.

𝑥1
𝑥3 𝑥4

𝑥2

Convolution
(over the graph)

Input:
Graph with data vectors

𝑦1, 𝑦2, 𝑦3, 𝑦4
Output:
Feature vectors

GCN: X n ×W → Yn

For binary weights wij ∈ {0, 1},
Graph Autoencoder (Kipf and Welling,
2016, GAE) learns a graph convolutional
network (Kipf and Welling, 2017, GCN)

(y1, y2, . . . , yn) = GCN(x1, x2, . . . , xn;W),

so that
wij ≈ σ(〈yi, yj〉).

, computationally tractable.
, non-linear.
, aggregate the information by considering the graph structure.

/ not inductive, i.e., unseen data vector xn+1 cannot be transformed.2

2GraphSAGE Hamilton et al. (2017) and some recent studies try to make GCN inductive, by utilizing associations
between the unseen data vector xn+1 and the learned vectors {xi}ni=1 .

© Akifumi Okuno 13

Existing Graph Embedding Methods

There are (mainly) 3 different types of graph embedding methods.

Spectral
Chung (1997),
Belkin and Niyogi (2003),
He and Niyogi (2004),...

,eigen-decomposition
/computationally hard
/limited to linear

Probabilistic
Mikolov et al. (2013),
Tang et al. (2015),...

,computationally
tractable
,non-linear
,inductive

We employ thismodel.

Convolution
Kipf and Welling (2016),
Kipf and Welling (2017),
Hamilton et al. (2017),...

,computationally
tractable
,non-linear
,graph convolution
/not inductive

© Akifumi Okuno 14

Further Statistical Analyses

Further statistical analyses can be conducted on the vectors {yi}
n
i=1 ⊂ Y .

𝑦3

𝑦4

𝑦5

𝑦1
𝑦2

(a) Discriminant analysis

𝑦3

𝑦4

𝑦5

𝑦1
𝑦2

(b) Clustering

𝑦3

𝑦4

𝑦5

𝑦1

𝑦2

(c) Visualization

Using obtained feature vectors have two advantages

, computationally tractable (usually, dimY ≤ dimX),
, expected to improve the performance of further analyses.

Obtained feature vectors {yi}
n
i=1 ⊂ Y(⊂ RK) simultaneously preserves

1. the locality of {xi}ni=1 ⊂ X (⊂ Rp), and
2. the association structure {wij}1≤i<j≤n.

© Akifumi Okuno 15

Examples: Graph with Data Vectors

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

(0,0,1)
(1,0,0)

(1,0,2)

Figure: Co-authorship network

• wij ∈ {0, 1, 2, . . .}: number of co-authored papers
• xi ∈ Np

0: number of publications in each of p conferences

xi := (
conf. A
2 ,

conf. B
0 ,

journal A
1 ,

journal B
0 ,

journal C
3 , . . .) ∈ Np

0

© Akifumi Okuno 16

Examples: Graph with Data Vectors

𝑣1
𝑣2

𝑣3
𝑣4

𝑣5

𝑣6

Figure: Citation network

• wij ∈ {0, 1}: whether i-th paper cites j-th paper 3

• xi ∈ Np
0: bag-of-words (i.e., num. of each word) for each paper

xi = (
"the"
10 ,

"he"
0 ,

"she"
0 ,

"animal"
2 ,

"fish"
1 ,

"dog"
0 , . . .) ∈ N]dictionary

0

3directed relation can be transformed to undirected relation.

© Akifumi Okuno 17

Examples: Graph with Data Vectors

 Female
 24 years old
 Bachelor
...

 Male
 74 years old
 Master
...

Figure: Friend network

• wij ∈ {0, 1}: friendship
• xi ∈ Rp: property vector (e.g., age, born, degree, etc..)

© Akifumi Okuno 18

Examples: Graph with Data Vectors

Figure: A general graph

• wij ≥ 0: Link weights
• no data vector: � 1-hot vector

xi := (0, . . . ,0, 1︸︷︷︸
i-th entry

,0, . . . ,0) ∈ {0, 1}n

can be used instead. (or, xi = wi := (wi1,wi2, . . . ,win) is used in
recommendation systems)

© Akifumi Okuno 19

Summary so far

Given link weights {wij}1≤i<j≤n and data vectors {xi}ni=1, e.g.,

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

(0,0,1)
(1,0,0)

(1,0,2)

(a) Co-author network

𝑣1
𝑣2

𝑣3
𝑣4

𝑣5

𝑣6

(b) Citation network

 Female
 24 years old
 Bachelor
...

 Male
 74 years old
 Master
...

(c) Friend network (d) General graph

graph embedding learns a neural network f : X 3 xi 7→ yi ∈ Y , by maximizing
the log-likelihood with a probabilistic model

wij | xi, xj
indep.∼ Bernoulli

(
σ
(
〈yi, yj〉

))
.

(� inner-product similarity has been used,
cf., Spectral:

∑n
i,j=1 wij〈yi, yj〉, and Convlution: wij ≈ σ(〈yi, yj〉).)

© Akifumi Okuno 20

PD and CPD similarities (AISTATS2019)

© Akifumi Okuno 21

Poincaré Embedding

Whereas many of graph embedding trains a neural network f : X 3 xi 7→ yi ∈ Y ,
by maximizing the log-likelihood with a probabilistic model

Tree (=graph) can be
efficiently embedded
with Poincaré distance.
(Nickel and Kiela, 2017,
Fig. 1(b))

wij | xi, xj
indep.∼ Bernoulli

(
σ
(
〈yi, yj〉

))
,

Poincaré embedding (Nickel and Kiela, 2017)4 considers

wij | xi, xj
indep.∼ Bernoulli

(
σ
(
−dPoincare(yi, yj)

))
,

where Y := {y ∈ Rp | ‖y‖2 < 1},

dPoincare(yi, yj) := cosh−1
(

1+ 2
‖yi − yj‖

2
2

(1− ‖yi‖22)(1− ‖yj‖22)

)
,

cosh−1(z) := log(z+
√

z2 − 1).

4Lorentz embedding (Nickel and Kiela, 2018) utilizes Lorentz model instead, for efficient computation.

© Akifumi Okuno 22

General Graph Embedding Framework

(Probabilistic) graph embedding can be generalized as follows:

General graph embedding

General graph embedding can be obtained by maximizing the log-likelihood of a model

wij | xi, xj
indep.∼ Q(ν(g(f(xi), f(xj))︸ ︷︷ ︸

(similarity)

)), yi := f(xi),

where

• Q(ν) is a user-specified distribution whose expectation is ν ∈ R,
• ν : R→ R is a user-specified function,
• g : Y2 → R is a user-specified kernel (i.e., symmetric and continuous function), and
• f : X → Y is a neural network to be estimated.

• Tang et al. (2015) Q: Bernoulli, ν: Sigmoid, g: inner-product.
• Nickel and Kiela (2017) Q: Bernoulli, ν: Sigmoid, g: negative Poincaré.
• Okuno et al. (2018) Q: Poisson, ν: Exponential, g: inner-product. etc...

© Akifumi Okuno 23

“Expressive power" of graph embedding

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

Embedding

Neural networks

Observed data vectors Obtained feature vectors

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

𝑦1
𝑦2

𝑦3

𝑦4

𝑦5

Figure: Graph embedding revisited.

Expressive power of graph embedding

⇔ Expressive power of the similarity function5

h(xi, xj) := g(yi, yj) = g(f(xi), f(xj)),

equipped with the neural network f and the user-specified kernel g.

5Similarity between two NNs g(f(xi), f(xj)) is also known as siamese network (Bromley et al., 1994).

© Akifumi Okuno 24

Inner-Product Similarity (IPS)

Okuno et al. (2018) Theorem 5.1, informal

g∗ : Y2
∗ → R is a PD kernel 6 and f∗ : X → Y∗ is a continuous function. Then,

g∗(f∗(xi), f∗(xj)) ≈ 〈f(xi), f(xj)〉,

for some sufficiently large neural network f : X → Y ⊂ RK with sufficiently large K.

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

Observed data vectors

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

Underlying feature space

Obtained feature space

𝑦1
𝑦2

𝑦3

𝑦4

𝑦5

Underlying

Embedding

Neural networks

𝑓∗

𝑓

Inner-Product

𝑔∗(𝑓∗ 𝑥𝑖 , 𝑓∗(𝑥𝑗))

〈𝑓 𝑥𝑖 , 𝑓(𝑥𝑗)〉

6kernel (i.e., continuous and symmetric function) g : Y2 → R satisfying
∑n

i,j=1 cicjg(yi, yj) ≥ 0 for all{yi}
n
i=1 ⊂

Y, {ci}ni=1 ⊂ R is called positive-definite (PD).

© Akifumi Okuno 25

Inner-Product Similarity (IPS)

Proof: Mercer’s theorem (Minh et al., 2006) indicates that

g∗(f∗(xi), f∗(xj))
Mercer
= 〈Ψ(xi),Ψ(xj)〉

for some Ψ. Considering the top-K entries ΨK , universal approximation theorem
for NN (Cybenko, 1989) proves that ΨK ≈ f for some NN f ; thus

〈Ψ(xi),Ψ(xj)〉 ≈ 〈ΨK(xi),ΨK(xj)〉 ≈ 〈f(xi), f(xj)〉.

The inner-product similarity 〈f(xi), f(xj)〉 with neural network f is

, capable of approximating any PD similarity g∗(f∗(xi), f∗(xj)).
, easy to compute.
/ limited to approximate PD similarities.

© Akifumi Okuno 26

Non-PD Similarities

• Negative Poincaré distance is not PD.

dPoincare(yi, yj) := cosh−1
(

1+ 2
‖yi − yj‖

2
2

(1− ‖yi‖22)(1− ‖yj‖22)

)
,

cosh−1(z) := log(z+
√

z2 − 1).

• Negative squared distance (NSD) is not PD.

dNSD(yi, yj) := −‖yi − yj‖
2
2

• Negative Wasserstein distance is not PD, etc...

Okuno et al. (2019) Proposition 4.1

For all M > 0, p,K ∈ N, and for any continuous functions f : Rp → RK ,

1
(2M)2p

x

[−M,M]2p

∣∣∣∣−‖x − x′‖22︸ ︷︷ ︸
non-PD

−〈f(x), f(x′)〉
∣∣∣∣dxdx′ ≥ 2pM2

3
.

© Akifumi Okuno 27

Non-PD Similarities

• Negative Poincaré distance is not PD.

dPoincare(yi, yj) := cosh−1
(

1+ 2
‖yi − yj‖

2
2

(1− ‖yi‖22)(1− ‖yj‖22)

)
,

cosh−1(z) := log(z+
√

z2 − 1).

• Negative squared distance (NSD) is not PD.

dNSD(yi, yj) := −‖yi − yj‖
2
2

• Negative Wasserstein distance is not PD, etc...

Okuno et al. (2019) Proposition 4.1

For all M > 0, p,K ∈ N, and for any continuous functions f : Rp → RK ,

1
(2M)2p

x

[−M,M]2p

∣∣∣∣−‖x − x′‖22︸ ︷︷ ︸
non-PD

−〈f(x), f(x′)〉
∣∣∣∣dxdx′ ≥ 2pM2

3
.

© Akifumi Okuno 27

Shifted Inner-Product Similarity (SIPS)

Conditionally PD (CPD) (Berg et al., 1984)

A symmetric function h : X 2 → R is called conditionally-PD (CPD) if∑n
i,j=1 cicjh(xi, xj) ≥ 0 for all {xi}ni=1 ⊂ X , {ci}

n
i=1 ⊂ R satisfying

∑n
i=1 ci = 0.

Conditionally PD
PD

Linear kernel,
Polynomial kernel,
Gaussian kernel,
Cosine similarity, …

Negative-squared dist.,
Negative-Poincare dist.,
Negative-Earth-mover’s,
Negative-sliced-Wasserstein,
…

© Akifumi Okuno 28

Shifted Inner-Product Similarity (SIPS)

Shifted Inner-Product Similarity (SIPS) (Okuno et al., 2019)

Proposed SIPS is defined as
〈f(xi), f(xj)〉+ u(xi) + u(xj),

where f : X → Y and u : X → R are neural networks.

SIPS is capable of approximating any CPD similarities as follows.

Okuno et al. (2019) Theorem 4.1, informal

g∗ : Y2
∗ → R is a CPD kernel and f∗ : X → Y∗ is a continuous function. Then,

g∗(f∗(xi), f∗(xj)) ≈ 〈f(xi), f(xj)〉+ u(xi) + u(xj),

for some sufficiently large neural networks f : X → Y ⊂ RK , u : X → R with sufficiently
large K.

© Akifumi Okuno 29

Shifted Inner-Product Similarity (SIPS)

Proof is based on the following Lemma.

Berg et al. (1984) Lemma 2.1

g∗ : Y2 → R is CPD, if and only if
g̃∗(y, y′) := g∗(y, y′)− g∗(y, y0)− g∗(y0, y′) + g∗(y0, y0)

with a y0 ∈ Y is PD.

For any CPD kernel g∗, we have

g∗(y, y′) = g̃∗(y, y′) +
(
g∗(y, y0)−

1
2g∗(y0, y0)

)
︸ ︷︷ ︸

=:r(y)

+

(
g∗(y0, y

′)− 1
2g∗(y0, y0)

)
︸ ︷︷ ︸

=:r(y′)

.

Substituting yi := f∗(xi) leads to
g∗(f∗(xi), f∗(xj)) = g̃∗(f∗(x), f∗(x′))︸ ︷︷ ︸

PD

+r(f∗(x)) + r(f∗(x′)).

Approximating the terms in right-hand-side by 〈f(x), f(x′)〉, u(x), u(x′),
respectively, lead to the assertion.

© Akifumi Okuno 30

Numerical Experiments (Okuno and Shimodaira, 2018)

2
1

0
1

2

2
1

0
1

2

40

20

0

20

40

(a) True
2

1
0

1
2

2
1

0
1

2

40

20

0

20

40

(b) IPS
2

1
0

1
2

2
1

0
1

2

40

20

0

20

40

(c) SIPS

Figure: SIPS can but IPS cannot approximate negative-squared distance (CPD).

For f∗(x) = (x1, cosx2, exp(−x3), sin(x4 − x5)) ∈ R4 w.r.t. x ∈ R5,

(a) −‖f∗(se1)− f∗(te2)‖22 (CPD),
(b) trained IPS 〈f(se1), f(te2)〉,
(c) trained SIPS 〈f(se1), f(te2)〉+ u(se1) + u(te2),

are plotted on (s, t)-plane along with two orthogonal directions e1, e2 ∈ R5.
f : R5 → R10 and u : R5 → R are two-layer neural networks with 1,000 hidden
units and ReLU activation.

© Akifumi Okuno 31

Numerical Experiments (Okuno and Shimodaira, 2018)

2
1

0
1

2 2
1

0
1

2

0.6

0.7

0.8

0.9

(a) True

2
1

0
1

2 2
1

0
1

2

0.6

0.7

0.8

0.9

(b) IPS

2
1

0
1

2 2
1

0
1

2

0.6

0.7

0.8

0.9

(c) SIPS

Figure: Both of IPS and SIPS can approximate Laplace kernel (PD).

As well,

(a) Laplace kernel exp(−‖f∗(se1)− f∗(te2)‖1) (PD),
(b) trained IPS 〈f(se1), f(te2)〉,
(c) trained SIPS 〈f(se1), f(te2)〉+ u(se1) + u(te2),

are plotted on (s, t)-plane.
© Akifumi Okuno 32

Numerical Experiments (Okuno and Shimodaira, 2018)

Prediction Mean Squared Error (PMSE) for approximating similarities. IPS
(Black) and SIPS (Blue).

●

●

● ● ● ● ●

●

●

● ● ● ● ●

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7

output dimension

(a)]hidden units=100

●

●

● ● ● ● ●

●

●

● ● ● ● ●

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7

output dimension

(b)]hidden units=1000

Figure: Cosine similarity (PD)
● ● ● ● ● ● ●

●
●

●

●

● ● ●

0.4
0.8
1.21.6

1 2 3 4 5 6 7

output dimension

(a)]hidden units=100

● ● ● ● ● ● ●

●
●

●

●

● ● ●

0.4
0.8
1.21.6

1 2 3 4 5 6 7

output dimension

(b)]hidden units=1000

Figure: negative Poincaré distance (CPD)

© Akifumi Okuno 33

Approximation Error Rate

Okuno et al. (2019) Theorem 5.2 with α = 1, informal

For any

• compact sets X ⊂ Rp,Y∗ ⊂ RK∗ ,
• CPD kernel g∗ ∈ C1(Y2

∗;R), and
• f∗ ∈ C1(X ;Y∗),

SIPS with ReLU-activated deep MLPs f : X → RK , u : X → R whose depths are
O(Lf),O(Lu) and widths are O(1), uniformly approximates g∗(f∗(x), f∗(x′)) with an error

O

K−1/K∗︸ ︷︷ ︸
(?)

+K1/2L−2/p
f + L−2/p

u

 .

Proof is straightforwardly obtained by applying Cobos and Kühn (1990) and
Yarotsky (2018). See Okuno et al. (2019) Supplement D.3 with α = 1.
Note: we showed only the comprehensible error rate; the above error rate can be
improved by employing other existing studies.

© Akifumi Okuno 34

Summary of this study

#Publications in Journal A

#
P

u
b

li
c
a

ti
o
n
s
 i
n
 J

o
u
rn

a
l
B

Embedding

Neural networks

Observed data vectors Obtained feature vectors

𝑥2

𝑥1

𝑥3

𝑥4𝑥5

𝑦1
𝑦2

𝑦3

𝑦4

𝑦5

Graph embedding learns a transformation f : X → Y , so that
wij ≈ Sigmoid(g(yi, yj)︸ ︷︷ ︸

“Similarity”

), yi := f(xi).

g is specified as inner-product (Tang et al., 2015), Poincaré-dist. (Nickel and
Kiela, 2017), etc..

Question �What kind of kernel g is good (in terms of the expressive power?)
Answer � Proposed shifted inner-product similarity (SIPS).

SIPS can approximate many kernels, e.g., Poincaré-distance!

© Akifumi Okuno 35

Recent Progress: General Similarities (arXiv:1902.10409)

© Akifumi Okuno 36

Non-CPD Similarities

Negative-squared dist.,
Negative-Poincare dist.,
Negative-Earth-mover’s,
Negative-sliced-Wasserstein,
…

Conditionally PD
PD

Linear kernel,
Polynomial kernel,
Gaussian kernel,
Cosine similarity, …

Epanechnikov kernel,
Multiquadratic kernel,
Gaussian combination,
Jeffrey’s,…

Non-CPD

Figure: There remain non-CPD similarities, that cannot be approximated by SIPS.

© Akifumi Okuno 37

Inner-Product Difference Similarity (IPDS)

General similarity g∗(f∗(xi), f∗(xj)) can be decomposed as

g∗(f∗(xi), f∗(xj)) = h+(xi, xj)︸ ︷︷ ︸
PD

− h−(xi, xj)︸ ︷︷ ︸
PD

,

and PD similarities h+, h− can be approximated by IPS.

Inner-Product Difference Similarity (IPDS) (Okuno et al., 2019, Supplement E)

IPDS is defined as
〈f+(xi), f+(xj)〉 − 〈f−(xi), f−(xj)〉,

where f+ : X → Y+ ⊂ RK+ , f− : X → Y− ⊂ RK− are neural networks.

IPDS is capable of approximating general similarities7.
, IPDS includes SIPS as a special case8.
/ requires to specify the rate K+/K−.

7more precisely, similarities dominated by PD similarity. see Ong et al. (2004)
8f+(x) := (f(x)>, u(x), 1)>, f−(x) := u(x)− 1.

© Akifumi Okuno 38

Weighted Inner-Product Similarity (WIPS)

Weighted Inner-Product Similarity (WIPS) (Kim et al., 2019)

WIPS is defined as
〈f(xi), f(xj)〉λ,

where f : X → Y is a neural network, 〈y, y′〉λ =
∑K

k=1 λkyky′k , and λ = (λ1, . . . , λK) ∈ RK

is a weight vector to be estimated.

, WIPS using λ := (1, 1, . . . , 1,−1,−1, . . . ,−1) reduces to IPDS.

Cosine sim., Gauss kernel, …

Negative Poincare distance, …

Negative Jeffrey’s divergence, …

CPD similarities

General similarities

PD similarities IPS

SIPS

IPDS and WIPS

, no need to specify the rate K+/K−.

© Akifumi Okuno 39

Numeraical Experiments (Kim et al., 2019)

In this numerical experiment, we embed WebKB hypertext network 9 equipped
with 1, 409-dim. Bag-of-Words data vectors.

Student,
Cornell

Student,
Washington

Course,
Texas

Course,
Wisconsin

Course,
Cornell

Course,
Washington

Figure: 877 hypertexts (nodes) are associated by 1, 480 hyperlinks (links).

Each node has semantic class labels

• one of {Student, Faculty, Staff, Course, Project},
• one of university labels in {Cornell, Texas, Washington, Wisconsin}.
9https://linqs.soe.ucsc.edu/data

© Akifumi Okuno 40

https://linqs.soe.ucsc.edu/data

Numeraical Experiments (Kim et al., 2019)

Obtained 10-dim. feature vectors are mapped to R2 with t-SNE (Maaten and
Hinton, 2008).
Semantic labels are colored as

• Student (navy), Course (pink),
• Cornell (red), Texas (orange), Washington (green) and Wisconsin (blue).

IPS

S
tu

d
e
n
t/

C
o
u

rs
e

U
n

iv
e
rs

it
ie

s

Hyperbolic SIPS IPDS WIPS

Figure: Selected nodes of embeded WebKB hypertext network using t-SNE.

Both class labels are clearly identified with IPDS and WIPS, whereas they
become obscure in the other embeddings.

© Akifumi Okuno 41

Numerical Experiments (Kim et al., 2019)

We conducted following experiments on WebKB hypertext network.

• Reconstruction of link weights from fully observed data,
• Link prediction of unseen nodes.

Table: ROC-AUC. Boldface is the best, and underlines are 2nd and 3rd best scores.

Dimensionality
Reconstruction Link prediction

10 50 100 10 50 100

H
yp

er
te
xt

IPS 91.99 94.23 94.24 77.73 77.62 77.16
Poincaré 94.09 94.13 94.11 82.21 79.64 79.48
SIPS 95.11 95.12 95.12 82.01 81.84 81.13
IPDS 95.12 95.12 95.12 82.59 82.75 82.19
WIPS 95.11 95.12 95.12 82.38 82.68 82.93

© Akifumi Okuno 42

Numerical Experiments (Kim et al., 2019)

Same experiments are conducted on

• DBLP Co-authorship network (Prado et al., 2013)
� 41, 328 nodes, 210, 320 links, 33-dim. data vectors.

• WordNet Taxonomy Tree (Nickel and Kiela, 2017)
� 37, 623 nodes, 312, 885 links, 300-dim. pre-trained word vectors.

Table: ROC-AUC. Boldface is the best, and underlines are 2nd and 3rd best scores.

Dimensionality
Reconstruction Link prediction

10 50 100 10 50 100

Co
-a

ut
ho

r IPS 85.01 86.02 85.80 83.83 84.41 84.02
Poincaré 86.84 86.69 86.72 85.82 85.92 85.93
SIPS 90.01 91.35 91.06 88.24 88.69 88.67
IPDS 90.13 91.68 91.59 88.42 88.97 88.85
WIPS 90.50 92.44 92.95 88.16 89.43 89.40

Ta
xo

no
m
y IPS 79.95 75.80 74.97 67.25 65.71 65.38

Poincaré 91.69 89.10 88.97 83.04 79.52 78.97
SIPS 98.78 99.75 99.77 90.42 92.12 92.09
IPDS 99.65 99.89 99.90 95.99 96.37 96.41
WIPS 99.64 99.85 99.87 95.07 96.36 96.51

© Akifumi Okuno 43

Conclusion

© Akifumi Okuno 44

Conclusion

(1) As the similarity g, we propose SIPS and IPDS in Okuno et al. (2019), that are
highly expressive compared with the simple inner-product similarity.

(2) We prove that SIPS approximates any CPD similarities, and IPDS
approximates general similarities.

(3) We also propose WIPS in Kim et al. (2019), that generalizes IPDS.

Negative-squared dist.,
Poincare dist.,
Earth-mover’s dist.,
Sliced-Wasserstein dist., …

Conditionally PD
PD

Linear kernel,
Polynomial kernel,
Gaussian kernel,
Cosine similarity, …

Epanechnikov kernel,
Multiquadratic kernel,
Gaussian combination,
Jeffrey’s,…

SIPS
IPDS, WIPS

IPS

(4) Experiments show the high expressive power of SIPS, IPDS, and WIPS.

© Akifumi Okuno 45

References I

Belkin, M. and Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation. Neural Computation, 15(6):1373–1396.

Berg, C., Christensen, J. P. R., and Ressel, P. (1984). Harmonic Analysis on
Semigroups.

Bojchevski, A. and Günnemann, S. (2018). Deep gaussian embedding of
attributed graphs: Unsupervised inductive learning via ranking. In Proceedings
of the International Conference on Learning Representations (ICLR).

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature
verification using a “siamese" time delay neural network. In Advances in
Neural Information Processing Systems, pages 737–744.

Chung, F. R. (1997). Spectral Graph Theory. Number 92. American Mathematical
Society.

Cobos, F. and Kühn, T. (1990). Eigenvalues of Integral Operators with Positive
Definite Kernels Satisfying Integrated Hölder Conditions over Metric
Compacta. Journal of Approximation Theory, 63(1):39–55.

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.
Mathematics of control, signals and systems, 2(4):303–314.

© Akifumi Okuno 46

References II

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034.

He, X. and Niyogi, P. (2004). Locality Preserving Projections. In Advances in
Neural Information Processing Systems, pages 153–160.

Kim, G., Okuno, A., Fukui, K., and Shimodaira, H. (2019). Representation Learning
with Weighted Inner Product
for Universal Approximation of General Similarities. arXiv preprint
arXiv:1902.10409. submitted.

Kipf, T. N. and Welling, M. (2016). Variational Graph Auto-Encoders. NIPS
Workshop.

Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with Graph
Convolutional Networks. In Proceedings of the International Conference on
Learning Representations (ICLR).

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605.

© Akifumi Okuno 47

References III

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances
in Neural Information Processing Systems, pages 3111–3119.

Minh, H. Q., Niyogi, P., and Yao, Y. (2006). Mercer’s Theorem, Feature Maps, and
Smoothing. In International Conference on Computational Learning Theory,
pages 154–168. Springer.

Nickel, M. and Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical
Representations. In Advances in Neural Information Processing Systems,
pages 6338–6347.

Nickel, M. and Kiela, D. (2018). Learning Continuous Hierarchies in the Lorentz
Model of Hyperbolic Geometry. In International Conference on Machine
Learning, pages 3776–3785.

Okuno, A., Hada, T., and Shimodaira, H. (2018). A probabilistic framework for
multi-view feature learning with many-to-many associations via neural
networks. In Proceedings of the International Conference on Machine
Learning (ICML), pages 3885–3894.

© Akifumi Okuno 48

References IV

Okuno, A., Kim, G., and Shimodaira, H. (2019). Graph Embedding with Shifted
Inner Product Similarity and Its Improved Approximation Capability. In
Proceedings of International Conference on Artificial Intelligence and Statistics.
to appear.

Okuno, A. and Shimodaira, H. (2018). On representation power of neural-network
based graph embedding and beyond. In ICML2018 workshop on Theoretical
Foundations and Applications of Deep Generative Models (TADGM).

Ong, C. S., Mary, X., Canu, S., and Smola, A. J. (2004). Learning with non-positive
kernels. In Proceedings of the International Conference on Machine Learning,
page 81. ACM.

Prado, A., Plantevit, M., Robardet, C., and Boulicaut, J.-F. (2013). Mining graph
topological patterns: Finding covariations among vertex descriptors. IEEE
Transactions on Knowledge and Data Engineering, 25(9):2090–2104.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). LINE:
Large-scale information network embedding. In Proceedings of the 24th
International Conference on World Wide Web, pages 1067–1077.

© Akifumi Okuno 49

References V

Vilnis, L. and McCallum, A. (2015). Word representations via gaussian
embedding. In Proceedings of the International Conference on Learning
Representations (ICLR).

Yarotsky, D. (2018). Optimal approximation of continuous functions by very deep
ReLU networks. In Conference On Learning Theory, pages 639–649.

© Akifumi Okuno 50

Shifted Inner-Product Similarity (SIPS)

If ν(·) = exp(·), using SIPS incorporates weights into IPS-based model, as

exp (〈f(xi), f(xj)〉+ u(xi) + u(xj))︸ ︷︷ ︸
SIPS-based model

= β(xi) · β(xj) · exp(〈f(xi), f(xj)〉)︸ ︷︷ ︸
IPS-based model

,

where β(x) := exp(u(x)) is weight function.

In practice, we utilize f̃(x) := (f(x)>, u(x))> for subsequent statistical
analyses (e.g. clustering, visualization,...).

, SIPS is capable of approximating any CPD similarities.
, SIPS-based model naturally incorporates weight function into IPS-based

model.
/ f, u in SIPS are unidentifiable (hard to train).

Proper regularization is required, as a future research.

© Akifumi Okuno 51

Numeraical Experiments (Kim et al., 2019)

Neural network architecture is specified as follows.

𝑥𝑖
Input:
Data vector

𝑦𝑖
Output:
Feature vector

𝑓

• We employ 1-hidden layer multi-layer perceptron with 2,000 hidden Units
and ReLU activation, for each neural networks.
• For IPDS, K+/K− is grid-searched over {0.01,0.25,0.5,0.75,0.9}.
• For WIPS, λ is uniformly randomly initialized in (0, 1/K)K .

For details, see Kim et al. (2019) Section 6.
© Akifumi Okuno 52

Gaussian Embedding

𝝁(𝒙𝑖)

𝚺(𝒙𝑖)

Gaussian embedding also
captures the uncertainty
Σ(xi) of the point
embedding µ(xi).

Gaussian embedding (Vilnis and McCallum,
2015) can be regarded as learning a neural network10

yi = NK(µ(xi),Σ(xi)︸ ︷︷ ︸
Neural network

),

where NK represents K-dim. Normal dist., so that

wij ≈ σ(−DKL(yi, yj)).

,Σ(xi) represents the uncertainty of the
embedding (Vilnis and McCallum, 2015).

DKL may be replaced with symmetric Jeffrey’s divergence

DJeff.(y, y′) := DKL(yi, yj) + DKL(yj, yi),

then Jeffrey’s divergence is not CPD (Okuno et al., 2019, Supplement E.3).

10Vilnis andMcCallum (2015) corresponds to using 1-hot vectors (as no data vectors are available), and Deep Gaus-
sian embedding (Bojchevski and Günnemann, 2018) incorporates neural network into Gaussian embedding.

© Akifumi Okuno 53

	Introduction: Graph Embedding with Data Vectors
	Formulation: Graph Embedding with Data Vectors
	Existing Graph Embedding Methods
	Examples: Graph with Data Vectors

	PD and CPD similarities (AISTATS2019)
	Poincaré Embedding
	Inner-Product Similarity (IPS)
	Shifted Inner-Product Similarity (SIPS)
	Numerical Experiments

	Recent Progress: General Similarities (arXiv:1902.10409)
	Non-CPD Similarities
	Inner-Product Difference Similarity (IPDS)
	Weighted Inner-Product Similarity (WIPS)
	Numerical Experiments

	Conclusion
	Appendix

