Extrapolation Towards Imaginary 0-Nearest Neighbour and Its Improved Convergence Rate

https://bit.ly/38nizZW
accepted to NeurIPS2020 (poster)

Summary: Proposed multiscale *k*-NN improves the convergence rate of *k*-NN.

Akifumi Okuno^{1,3} and Hidetoshi Shimodaira^{2,3} ¹Inst. of Stat. Math. ²Kyoto Univ. ³RIKEN AIP

Table of contents

1 Preliminaries

- Problem setting
- k-nearest neighbour (k-NN)
- Bias-variance tradeoff

2 Proposal: multiscale k-NN

- Idea of multiscale k-NN
- Multiscale k-NN
- Comparison with existing estimators
- **3** Theories: convergence rate analysis
- Conditions
- Convergence rate of k-NN
- Convergence rate of multiscale k-NN

4 Weighted k-NN

5 Numerical experiments

6 Some remarks

Conclusion

Preliminaries

Classification problem

- Let $X \in \mathbb{R}^d$, $Y \in \{0, 1\}$ be random variables, where $(X, Y) \sim \mathbb{Q}$.
- Observations $\mathcal{D}_n := \{(X_i, Y_i)\}_{i=1}^n$ are independent copies of (X, Y).

• We aim at obtaining a classifier $\hat{g}_n:\mathbb{R}^d\to\{0,1\}$ that minimizes

$$\mathbb{P}_{(X_*,Y_*)\sim\mathbb{Q}}(Y_*\neq \hat{g}_n(X_*)),$$

where X_* is a *query*, and \hat{g}_n is trained with the observations \mathcal{D}_n .

k-nearest neighbour (k-NN) classifier

• Rearrange the index such that

$$\|X_* - X_{(1)}\|_2 \le \|X_* - X_{(2)}\|_2 \le \cdots \le \|X_* - X_{(n)}\|_2$$

• k-NN estimator is defined by the ratio

$$\hat{\eta}_k^{(kNN)}(X_*) := k^{-1} \sum_{i=1}^k Y_{(i)}.$$

• Hereinafter, we only consider plug-in classifier $\hat{g}(X_*) = \mathbb{1}(\hat{\eta}(X_*) \ge 1/2)$ defined for estimators $\hat{\eta}$.

Bias-variance tradeoff

- small k: 🙂 small bias 🙂 large variance
- large k: 🙂 small variance 🙂 large bias

- Conventional: choose the best k value by considering the tradeoff.
- Ours: reduces the asymptotic bias!

Proposal: multiscale *k***-NN**

How to reduce the bias?: An overview

Consider a radius $r_k := ||X_* - X_{(k)}||_2$, a ball B(X; r), and $\eta^{(\infty)}(B) := \mathbb{E}(Y \mid X \in B)$, where Chaudhuri and Dasgupta (2014) proves that

 $\hat{\eta}_k^{(k\mathrm{NN})}(X_*) \approx \eta^{(\infty)}(B(X_*,r_k)) \quad (k = k_n \to \infty, n \to \infty \text{ and } k/n \to 0).$

bias is due to $r > 0 \Rightarrow$ (imaginary) r = 0 is preferred: $\eta^{(\infty)}(B(X_*;r)) \rightarrow \eta(X_*) = \mathbb{E}[Y_* \mid X_*], \quad (r \rightarrow 0; \text{ Federer (1967)})$

To obtain (imaginary) 0-NN estimator, we extrapolate k-NN estimators $\hat{\eta}_{k_1}^{(kNN)}(X_*), \hat{\eta}_{k_2}^{(kNN)}(X_*), \dots, \hat{\eta}_{k_V}^{(kNN)}(X_*)$

to r = 0 via the radii $r_{k_1}, r_{k_2}, \ldots, r_{k_V}$.

Consider a set \mathcal{F} of regression functions $f : \mathbb{R} \to \mathbb{R}$ (e.g., $f(r) = \beta_0 + \beta_1 r$). By choosing $V \in \mathbb{N}$ and $1 \le k_1 < k_2 < \cdots < k_V \le n$, we conduct a regression

$$\hat{f} := \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{v=1}^{V} \left(\hat{\eta}_{k_v}^{(kNN)} - f(r_{k_v}) \right)^2, \quad (r_k := \|X_* - X_{(k)}\|_2).$$

Definition (Multiscale k-NN)

We define a multiscale k-NN (MS-k-NN) estimator

$$\hat{\eta}_{\boldsymbol{k}}^{(MSkNN)}(X_*) := \hat{f}(0)$$

where $\mathbf{k} = (k_1, k_2, ..., k_V)$.

MS-k-NN formally extrapolates k-NN estimators to r = 0.

Comparison with k-NN estimator

Roughly speaking, bias is reduced for $\beta > 2$: k-NN: $|\hat{\eta}_k^{(kNN)}(X_*) - \eta(X_*)| \approx O(r_k^2)$, MS-k-NN: $|\hat{\eta}_k^{(MSKNN)}(X_*) - \eta(X_*)| \approx O(r_k^\beta)$. Variances are in the same order; overall, the convergence rate is reduced.

Comparison with local polynomial (LP) estimator

LP and MS-*k*-NN attain the **same optimal convergence rate**. However, MS-*k*-NN requires **much less terms** than LP, to obtain the same rate.

LP: $1 + d + d^2 + \cdots + d^C$ coefficients, to estimate Taylor polynomial of $\eta(X)$ (and extrapolate to X_*),

MS-*k*-NN: 1 + C coefficients to be estimated.

Furthermore, MS-k-NN is also expected to inherit the favorable properties of k-NN.

Theories: convergence rate analysis

Given a classifier $g : \mathbb{R}^d \to \{0, 1\}$, we define a misclassification error rate $L(g) := \mathbb{P}_{(X_*, Y_*) \sim \mathbb{Q}}(Y_* \neq g(X_*))$ and excess risk

$$\mathcal{E}(g) := L(g) - \inf_{g:\mathbb{R}^d \to \{0,1\}} L(g).$$

Convergence rate:

the order of $\mathcal{E}(\hat{g}_n)$ w.r.t. *n*.

In order to elucidate the convergence rate, we employ

- α -margin condition,
- β -Hölder condition, and
- γ -neighbour average smoothness condition,

by referring to existing studies (see, e.g., Audibert and Tsybakov (2007), Samworth (2012) and Chaudhuri and Dasgupta (2014)).

Conditions

Definition (α -margin condition)

If $\exists L_{\alpha} > 0, \tilde{t} > 0, \alpha \ge 0$ such that $\mathbb{P}(|\eta(X) - 1/2| \le t) \le L_{\alpha}t^{\alpha} \quad (\forall t \in (0, \tilde{t}], X \in \mathcal{X}),$

 η is said to be satisfying $\alpha\text{-margin condition}.$

 α is Large \Rightarrow only a few covariates are near boundary \Rightarrow classification is easy. \Rightarrow fast convergence

Definition (β -Hölder condition)

Let $\mathcal{T}_{q,X_*}[\eta]$ be the Taylor expansion of η of degree $q \in \mathbb{N}_0$. If $\exists L_\beta > 0$ such that

$$|\eta(\mathsf{X}) - \mathcal{T}_{|\beta|,\mathsf{X}_*}[\eta](\mathsf{X})| \le L_{\beta} ||\mathsf{X} - \mathsf{X}_*||^{\beta} \quad (\forall \mathsf{X}, \mathsf{X}_* \in \mathcal{X}),$$

 η is said to be satisfying β -Hölder condition.

 β is large $\Rightarrow \eta(X)$ is smooth \Rightarrow estimation of η is easy \Rightarrow fast convergence

Definition (γ -neighbour average smoothness condition)

Let $\eta^{(\infty)}(B) := \mathbb{E}[Y \mid X \in B]$. If $\exists L_{\gamma}, \gamma > 0$ such that $|\eta^{(\infty)}(B(X;r)) - \eta(X)| \le L_{\gamma}r^{\gamma} \quad (\forall r > 0, X \in \mathcal{S}(\mu)),$

 η is said to be satisfying γ -neighbour average smoothness condition.

 γ is large \Rightarrow *k*-NN approximation $\eta^{(\infty)}(B(X_*;r)) = \mathbb{E}[Y \mid X \in B(X_*;r)]$ converges to $\mathbb{E}[Y \mid X_*]$ quickly \Rightarrow fast convergence

Definition (Strong density assumption (SDA) on pdf μ of X)

If $\exists \mu_{\min}, \mu_{\max} \in (0, \infty)$ such that $\mu(X) \in [\mu_{\min}, \mu_{\max}]$ for all $X \in \mathcal{X}$, μ is said to be satisfying **strong density assumption** (SDA).

Theorem (Chaudhuri and Dasgupta (2014) Theorem 4)

Let \mathcal{X} be a compact set, and assuming that (i) η satisfies α - and γ - conditions, and (ii) μ satisfies SDA, it holds with $k_* \simeq n^{2\gamma/(2\gamma+d)}$ that

$$\mathcal{E}(\hat{g}_{k_*}^{(k\mathsf{NN})}) = O(n^{-(1+\alpha)\gamma/(2\gamma+d)}),$$

for (unweighted) k-NN plug-in classifier $\hat{g}_{k}^{(kNN)}$.

• A natural question: $\gamma = \beta$ if β -Hölder condition is employed instead of γ -?

Answer is No.

Theorem (Okuno and Shimodaira (2020) Theorem 1)

Let $\eta(X) := \mathbb{E}(Y \mid X)$ and let μ be the p.d.f. of X. Assuming that

- (1) both of μ and $\eta\mu$ are β (> 0)-Hölder,
- (2) support of μ is compact,

(3)
$$k = k_n \to \infty, k/n \to 0, n \to \infty.$$

Then, for some $b_2^*,\ldots,b_{\lfloor eta/2
floor}^* \in \mathbb{R}$, it holds that

$$\eta^{(\infty)}(B(X_*,r_k)) = \eta(X_*) + \underbrace{b_1^* r_k^2 + b_2^* r_k^4 + \dots + b_{\lfloor\beta/2\rfloor}^* r_k^{\lfloor\beta/2\rfloor} + O(r_k^\beta)}_{\text{bias}}$$

and $b_1^* = \frac{1}{2d+4} \frac{1}{\mu(X_*)} \{ \Delta[\eta(X_*)\mu(X_*)] - \eta(X_*)\Delta\mu(X_*) \}$ with the Laplacian operator Δ .

If β -Hölder condition is assumed instead of γ -, we have

$$\gamma = \min\{\beta, \mathbf{2}\},$$

indicating that $\mathcal{E}(\hat{g}_{k_*}^{(kNN)}) = O(n^{-2(1+\alpha)/(4+d)})$ even for sufficiently smooth η .

Audibert and Tsybakov (2007) Theorem 3.5 proves the optimal rate for plug-in classifiers: considering $\beta(> 0)$ -Hölder function η , there exists L > 0 such that

$$\inf_{\substack{g: \text{plug-in classifier } \eta, \mu}} \mathcal{E}(g) \geq L \cdot n^{-(1+\alpha)\beta/(2\beta+d)}$$

Table: Convergence rates for $\alpha = 1, \beta = 2u \ (u \in \mathbb{N})$

<i>k</i> -NN	$O(n^{-4/(4+d)})$	Chaudhuri and Dasgupta (2014)
Local linear	$O(n^{-4/(4+d)})$	Hall and Kang (2005)
Local polynomial	$O(n^{-2\beta/(2\beta+d)})$	Audibert and Tsybakov (2007)
Multiscale k-NN	$O(n^{-2\beta/(2\beta+d)})$	Okuno and Shimodaira (2020)

Okuno and Shimodaira (2020) Theorem 1:

$$\underbrace{\eta^{(\infty)}(B(X_*,r_k))}_{k\text{NN estimator}} = \eta(X_*) + \underbrace{b_1^* r_k^2 + b_2^* r_k^4 + \dots + b_{\lfloor\beta/2\rfloor}^* r_k^{2\lfloor\beta/2\rfloor} + O(r_k^\beta)}_{\text{bias}}$$

leads to a regression function

$$f_{\mathcal{C}}(r; \boldsymbol{b}) := b_0 + b_1 r^2 + b_2 r^4 + \cdots + b_{\mathcal{C}} r^{2\mathcal{C}} \quad (\mathcal{C} = \lfloor \beta/2 \rfloor).$$

The function f_c approximates the bias term, and extrapolation to r = 0 yields

$$f_C(0; \hat{\boldsymbol{b}}) = \hat{b}_0 \approx \eta(X_*).$$

Therefore, we may employ a set of even-degree polynomials

$$\mathcal{F}_{C} := \{b_{0} + b_{1}r_{1}^{2} + b_{2}r_{2}^{4} + \dots + b_{C}r^{2C} \mid b_{0}, b_{1}, \dots, b_{C} \in \mathbb{R}\}.$$

With user-specified $\ell_1 = 1 < \ell_2 < \cdots < \ell_V < \infty$, we consider

(C1)
$$k_1 \simeq n^{2\beta/(2\beta+d)}$$
,
(C2) $k_v := \min\{k \in [n] \mid ||X_{(k)} - X_*||_2 \ge \ell_v r_{k_1}\} \text{ for } v = 2, 3, \dots, V$,
(C3) $\exists L_z > 0 \text{ such that } \|\frac{(l-\mathcal{P}_R)\mathbf{1}}{\mathbf{1}^\top (l-\mathcal{P}_R)\mathbf{1}}\|_{\infty} \le L_z \text{ for } \mathbf{R} = (\ell_i^{2j})_{ij}, \mathcal{P}_R = \mathbf{R}(\mathbf{R}^\top \mathbf{R})^{-1} \mathbf{R}^\top$.

Theorem (Okuno and Shimodaira (2020) Theorem 2)

Assuming that (i) μ , $\eta\mu$ are β -Hölder¹, (ii) μ satisfies SDA, (iii) $C := \lfloor \beta/2 \rfloor \leq V - 1$, and (iv) (C-1)–(C-3) are satisfied. Then, MS-*k*-NN plug-in classifier attains the optimal rate

$$\mathcal{E}(\hat{g}_{\boldsymbol{k}_{*}}^{(\mathsf{MSkNN})}) = O(n^{-(1+\alpha)\beta/(2\beta+d)}).$$

Weighted k-NN

MS-*k*-NN = weighted *k*-NN with real-valued weights

Consider a weighted k-NN estimator

$$\hat{\eta}_{k,\mathbf{w}}^{(k\mathrm{NN})}(X_*) = \sum_{i=1}^k w_i Y_{(i)}$$

with weights $\sum_{i=1}^{k} w_i = 1$. Then, MS-*k*-NN is equivalent to the weighted *k*-NN equipped with $k = k_V$ and **real-valued weights**

$$w_i := \sum_{v:i \leq k_v} \frac{z_v}{k_v} \in \mathbb{R} \ (\forall i \in [k_v]), \quad \boldsymbol{z} = (z_1, z_2, \dots, z_v) := \frac{(l - \mathcal{P}_R)\mathbf{1}}{\mathbf{1}^\top (l - \mathcal{P}_R)\mathbf{1}} \in \mathbb{R}^V.$$

• Negative weights are essential for eradicating the bias.

Figure: (Implicit) weights obtained in multiscale k-NN

Only one existing study that considers *k*-NN with real-valued weights is Samworth (2012); it proves for $\alpha = 1, k_* \simeq n^{2\beta/(2\beta+d)}$ that

$$\inf_{w\in\mathcal{W}}\mathcal{E}(\hat{g}_{k_*,w}^{(k\mathsf{NN})}) = O(n^{-(1+\alpha)\beta/(2\beta+d)}) \,\,\text{for a conditioned set}\,\,\mathcal{W}\subseteq\mathbb{R}^{k_*}.$$

Samworth (2012) shows equations of the optimal weights by minimizing Taylor series of the excess risk; solutions are obtained only for $\beta = 2, 4$. For $\beta = 4$,

$$w_i = (a_0 + a_i \delta_i^{(1)} + \cdots + a_u \delta_i^{(u)})/k_*$$

with $\delta_i^{(\ell)} := i^{1+2\ell/d} - (i-1)^{1+2\ell/d} \ (\forall \ell \in [u]), a_0 \in \mathbb{R}, a_1 := \frac{1}{k_*^{2/d}} \{ \frac{(d+4)^2}{4} - \frac{2(d+4)}{d+2} a_0 \},$ and $a_2 := \frac{1-a_0 - k_*^{2/d} a_1}{k_*^{4/d}}.$

Figure: Optimal real-valued weights in Samworth (2012)

• cf. Samworth (2012) also proves the rate $O(n^{-4/(4+d)})$ for non-negative weights, which is the same as unweighted *k*-NN.

Numerical experiments

We perform

- (1) unweighted k-NN ($w_i = 1/k$)
- (2) weighted k-NN with non-negative weights $w_i \ge 0$
- (3) weighted *k*-NN with *real-valued* weights $w_i \in \mathbb{R}$
- (4) (**Proposal**) MS-k-NN extrapolated via r(k)
- (5) (Modificaiton) MS-k-NN extrapolated via log k

on 13 datasets obtained from UCI ML Repository (Dua and Graff, 2017).

- Divided into: 70% for training, 30% for test.
- Sample mean and standard deviation of the prediction accuracy on 10 times experiments are computed.
- Regression in MS-k-NN is ridge regularized with $\lambda = 10^{-4}$.
- $V = 5, k := n_{\text{train}}^{4/(4+d)}, k_1 = k/V, k_2 = 2k/V, ..., k_V = k.$

- n: number of observations
- d: dimension of X
- m: number of categories

Dataset	n	d	m	<i>k</i> -NN			MS-k-NN	
Databot		u		$w_i = 1/k$	$w_i \ge 0$	$w_i \in \mathbb{R}$	via r(k)	via log k
Iris	150	4	3	$\textbf{0.83} \pm \textbf{0.04}$	$\textbf{0.92}\pm\textbf{0.05}$	$\textbf{0.92}\pm\textbf{0.04}$	0.93 ± 0.04	$\textbf{0.96} \pm 0.04$
Glass iden.	213	9	6	0.58 ± 0.06	0.64 ± 0.06	$\textbf{0.67} \pm 0.05$	$\underline{0.64} \pm 0.05$	0.64 ± 0.05
Ecoli	335	7	8	$\textbf{0.80} \pm \textbf{0.03}$	$\textbf{0.85} \pm 0.03$	$\underline{0.84} \pm 0.02$	$\textbf{0.85} \pm 0.02$	$\underline{0.84} \pm 0.02$
Diabetes	768	8	2	$\textbf{0.75} \pm 0.03$	$\underline{0.74} \pm 0.03$	$\overline{0.70}\pm0.04$	$\textbf{0.75} \pm 0.03$	0.71 ± 0.03
Biodeg.	1054	41	2	$\underline{0.84} \pm 0.02$	$\textbf{0.86} \pm 0.03$	0.79 ± 0.02	$\textbf{0.86} \pm 0.02$	$\textbf{0.80} \pm \textbf{0.02}$
Banknote	1371	4	2	$\textbf{0.95} \pm \textbf{0.01}$	<u>0.98</u> ± 0.01	$\textbf{0.97} \pm \textbf{0.01}$	$\underline{0.98} \pm 0.01$	$\textbf{0.99} \pm 0.00$
Yeast	1484	8	10	0.57 ± 0.02	$\textbf{0.58} \pm 0.02$	0.54 ± 0.03	$\textbf{0.58} \pm 0.02$	0.54 ± 0.02
Wire. local.	2000	7	4	$\underline{0.97}\pm0.00$	$\textbf{0.98} \pm 0.00$	$\textbf{0.98} \pm 0.01$	$\textbf{0.98} \pm 0.00$	$\textbf{0.98} \pm 0.01$
Spambase	4600	57	2	0.90 ± 0.01	$\textbf{0.91} \pm 0.00$	$\textbf{0.86} \pm \textbf{0.01}$	$\textbf{0.91} \pm 0.00$	0.87 ± 0.01
Robot navi.	5455	24	4	$\textbf{0.81} \pm \textbf{0.01}$	$\textbf{0.86} \pm 0.01$	$\textbf{0.81} \pm \textbf{0.01}$	$\underline{0.84} \pm 0.01$	0.84 ± 0.01
Page blocks	5473	10	5	0.95 ± 0.01	<u>0.95</u> ± 0.01	$\textbf{0.96} \pm 0.01$	$\textbf{0.96} \pm 0.01$	$\textbf{0.96} \pm 0.01$
MAGIC	19020	10	2	$\textbf{0.82} \pm \textbf{0.00}$	$\textbf{0.82}\pm\textbf{0.00}$	$\textbf{0.84} \pm 0.01$	$\underline{0.83}\pm0.00$	$\underline{0.83} \pm 0.00$
Avila	20867	10	12	0.63 ± 0.01	0.68 ± 0.01	$\textbf{0.70} \pm 0.01$	$\overline{\underline{0.69}}\pm0.00$	$\textbf{0.70} \pm 0.01$

Table: Best scores are **bolded**, and second best scores are <u>underlined</u>.

Some remarks

Non-asymptotic regression function specification

Okuno and Shimodaira (2020) Theorem 1 proves that

$$\eta^{(\infty)}(B(X_*;r_k)=\eta(X_*)+\sum_{c=1}^{\lfloor\beta/2\rfloor}r_k^{2\lfloor\beta/2\rfloor}+O(r_k^\beta).$$

for small $r_k \approx 0$ (as $k/n \rightarrow 0, n \rightarrow \infty$).

Figure: Monte-Carlo expectation of *k*-NN estimators (black line), and the polynomials of degrees q = 1, 2, 3 trained on $r = \delta, 2\delta, \ldots, 6\delta$.

Sigmoid-based functions

• Even degree polynomials $b_0 + b_1 r_1^2 + \cdots + b_C r^{2C}$: $\mathbb{R} \to \mathbb{R}$ can be replaced with

$$\sigma\left(b_0+b_1r_1^2+\cdots+b_Cr^{2C}\right)$$
 : $\mathbb{R} \to [0,1]$

using the sigmoid function $\sigma(z) = (1 + \exp(-z))^{-1}$, to attain the optimal rate. (These two functions are essentially equivalent for small $r \approx 0$.)

Figure: Sigmoid-based functions (dot lines).

$$\eta^{(\infty)}(B(X_*;r)) = \mathbb{E}[Y \mid X \in B(X_*;r)] = \frac{\int_{B(X_*;r)} \eta(X)\mu(X) \mathrm{d}X}{\int_{B(X_*;r)} \mu(X) \mathrm{d}X}$$

• To apply Taylor-expansion, μ , $\eta\mu$ are assumed to be β -Hölder in Theorem 1:

$$\eta^{(\infty)}(B(X_*;r)) = \sum_{c=0}^{c} b_c^* r^{2c} + O(r^{\beta}).$$

• If μ , $\eta\mu$ are polynomial, we have a non-asymptotic expansion:

$$\eta^{(\infty)}(B(X_*;r)) = \mathbb{1}(C_1 - C_2 \ge 0) \sum_{c=0}^{C_1 - C_2} b_c^* r^{2c} + \frac{\sum_{c=0}^{C_2 - 1} \gamma_c^{(1)} r^{2c}}{\sum_{c=0}^{C_2} \gamma_c^{(2)} r^{2c}}$$

for some $\{b_c^*\}, \{\gamma_c^{(1)}\}, \{\gamma_c^{(2)}\} \subset \mathbb{R}$.

k-NN estimators $\hat{\eta}_{k_1}^{(kNN)}, \hat{\eta}_{k_2}^{(kNN)}, \dots, \hat{\eta}_{k_V}^{(kNN)}$ are dependent.

Figure: Dependence of k-NN estimators computed via Monte-Carlo simulation.

• Dependence can be considered in the regression.

- Cross-validation is conducted for choosing the parameters k_1, k_2, \ldots, k_V .
- Instead of choosing 1 ≤ k₁ < k₂ < · · · < k_V ≤ n, we may employ k₁ = 1, k₂ = 2, . . . , k_{V'} = V' (V ≪ V'; for avoiding parameter selection): empirically better performance in some cases.

Conclusion

Conclusion

- To obtain (imaginary) 0-NN estimator, k-NN estimators η̂_{k1}, η̂_{k2},..., η̂_{ky} are extrapolated to r = 0 via radius r_k := ||X_(k) − X_{*}||₂.
- Obtained multiscale *k*-NN (MS-*k*-NN) estimator reduces the bias of *k*-NN, and **it attains the optimal rate**.
- MS-k-NN is equivalent to weighted k-NN with some real-valued weights.
- Weights are automatically determined via regression (in MS-*k*-NN); they are different from Samworth (2012), which solves entangled equations.

Acknowledgement: We would like to thank Bourbon Cao (Kyoto U.) and Takuma Tanaka (Kyoto U.) for helpful discussions.

- Audibert, J.-Y. and Tsybakov, A. B. (2007). Fast learning rates for plug-in classifiers. *Ann. Statist.*, 35(2):608–633.
- Chaudhuri, K. and Dasgupta, S. (2014). Rates of convergence for nearest neighbor classification. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, *Advances in Neural Information Processing Systems 27*, pages 3437–3445. Curran Associates, Inc.
- Devroye, L., Györfi, L., and Lugosi, G. (1996). *A Probabilistic Theory of Pattern Recognition*, volume 31. Springer, New York.
- Dua, D. and Graff, C. (2017). UCI Machine Learning Repository.
- Federer, H. (1967). Geometric measure theory. Springer.
- Hall, P. and Kang, K.-H. (2005). Bandwidth choice for nonparametric classification. *Ann. Statist.*, 33(1):284–306.
- Okuno, A. and Shimodaira, H. (2020). Extrapolation towards imaginary 0-nearest neighbour and its improved convergence rate. *arXiv preprint arXiv:2002.03054*.
- Samworth, R. J. (2012). Optimal weighted nearest neighbour classifiers. *Ann. Statist.*, 40(5):2733–2763.