
Extrapolation Towards Imaginary 0-Nearest Neighbour
and Its Improved Convergence Rate

https://bit.ly/38nizZW
accepted to NeurIPS2020 (poster)

Summary: Proposed multiscale k-NN improves
the convergence rate of k-NN.

Akifumi Okuno1,3 and Hidetoshi Shimodaira2,3

1Inst. of Stat. Math. 2Kyoto Univ. 3RIKEN AIP

https://bit.ly/38nizZW


Table of contents

1 Preliminaries
Problem setting
k-nearest neighbour (k-NN)
Bias-variance tradeoff

2 Proposal: multiscale k-NN
Idea of multiscale k-NN
Multiscale k-NN
Comparison with existing estimators

3 Theories: convergence rate analysis
Conditions
Convergence rate of k-NN
Convergence rate of multiscale k-NN

4 Weighted k-NN

5 Numerical experiments

6 Some remarks

7 Conclusion

2 / 36



Preliminaries
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Classification problem

• Let X ∈ Rd,Y ∈ {0, 1} be random variables, where (X,Y) ∼ Q.
• Observations Dn := {(Xi,Yi)}ni=1 are independent copies of (X,Y).

Free images are obtained from 
https://pixabay.com/

𝑋 ∈ ℝ𝑑: Feature vector of the image

𝑌 = 0

𝑌 = 1

𝑌 = 1

𝑌 = 1

𝑌 = 1
Query 𝑋∗:

𝑌∗ = 0 or 1?

• We aim at obtaining a classifier ĝn : Rd → {0, 1} that minimizes

P(X∗,Y∗)∼Q(Y∗ 6= ĝn(X∗)),

where X∗ is a query, and ĝn is trained with the observations Dn.
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k-nearest neighbour (k-NN) classifier

Free images are obtained from 
https://pixabay.com/

𝑌 = 0

𝑌 = 1

𝑌 = 1

𝑌 = 1

𝑌 = 1

• Rearrange the index such that

‖X∗ − X(1)‖2 ≤ ‖X∗ − X(2)‖2 ≤ · · · ≤ ‖X∗ − X(n)‖2.

• k-NN estimator is defined by the ratio

η̂
(kNN)
k (X∗) := k−1

k∑
i=1

Y(i).

• Hereinafter, we only consider plug-in classifier ĝ(X∗) = 1(η̂(X∗) ≥ 1/2)
defined for estimators η̂.
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Bias-variance tradeoff

• small k:,small bias/large variance
• large k:,small variance/large bias

𝔼( Ƹ𝜂𝑘
𝑘NN

𝑋∗ )

𝜂 𝑋∗

Ƹ𝜂𝑘
𝑘NN

𝑋∗

True prob.

k-NN for an instance

• Conventional: choose the best k value by considering the tradeoff.
• Ours: reduces the asymptotic bias!
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Proposal: multiscale k-NN
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How to reduce the bias?: An overview

Consider a radius rk := ‖X∗ − X(k)‖2, a ball B(X; r), and η(∞)(B) := E(Y | X ∈ B),
where Chaudhuri and Dasgupta (2014) proves that

η̂
(kNN)
k (X∗) ≈ η(∞)(B(X∗, rk)) (k = kn →∞, n→∞ and k/n→ 0).

𝑟𝑘1
𝑟𝑘2

𝑋(𝑘1)

𝑋(𝑘2)
ℝ𝑑

bias is due to r > 0⇒ (imaginary) r = 0 is preferred:

η(∞)(B(X∗; r))→ η(X∗) = E[Y∗ | X∗], (r→ 0; Federer (1967))

To obtain (imaginary) 0-NN estimator, we extrapolate k-NN estimators

η̂
(kNN)
k1

(X∗), η̂(kNN)
k2

(X∗), . . . , η̂(kNN)
kV

(X∗)

to r = 0 via the radii rk1 , rk2 , . . . , rkV . 8 / 36



Multiscale k-NN

Consider a set F of regression functions f : R→ R (e.g., f(r) = β0 + β1r). By
choosing V ∈ N and 1 ≤ k1 < k2 < · · · < kV ≤ n, we conduct a regression

f̂ := argmin
f∈F

V∑
v=1

(
η̂

(kNN)
kv − f(rkv )

)2
, (rk := ‖X∗ − X(k)‖2).

Definition (Multiscale k-NN)

We define a multiscale k-NN (MS-k-NN) estimator

η̂
(MSkNN)
k (X∗) := f̂(0)

where k = (k1, k2, . . . , kV).

MS-k-NN formally extrapolates k-NN estimators to r = 0.
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Comparison with existing estimators

Comparison with k-NN estimator

Roughly speaking, bias is reduced for β > 2:

k-NN: |η̂(kNN)
k (X∗)− η(X∗)| ≈ O(r2k ),

MS-k-NN: |η̂(MSkNN)
k (X∗)− η(X∗)| ≈ O(rβk ).

Variances are in the same order; overall, the convergence rate is reduced.

Comparison with local polynomial (LP) estimator

LP and MS-k-NN attain the same optimal convergence rate. However, MS-k-NN requires
much less terms than LP, to obtain the same rate.

LP: 1 + d + d2 + · · ·+ dC coefficients, to estimate Taylor polynomial of η(X)
(and extrapolate to X∗),

MS-k-NN: 1 + C coefficients to be estimated.
Furthermore, MS-k-NN is also expected to inherit the favorable properties of k-NN.
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Theories: convergence rate analysis
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Convergence rate of the excess risk

Given a classifier g : Rd → {0, 1}, we define a misclassification error rate
L(g) := P(X∗,Y∗)∼Q(Y∗ 6= g(X∗)) and excess risk

E(g) := L(g)− inf
g:Rd→{0,1}

L(g).

Convergence rate:

the order of E(ĝn) w.r.t. n.

In order to elucidate the convergence rate, we employ

• α-margin condition,
• β-Hölder condition, and
• γ-neighbour average smoothness condition,

by referring to existing studies (see, e.g., Audibert and Tsybakov (2007),
Samworth (2012) and Chaudhuri and Dasgupta (2014)).
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Conditions

Definition (α-margin condition)

If ∃Lα > 0, t̃ > 0, α ≥ 0 such that

P(|η(X)− 1/2| ≤ t) ≤ Lαtα (∀t ∈ (0, t̃],X ∈ X ),

η is said to be satisfying α-margin condition.

Figure: Small α Figure: Large α

α is Large⇒ only a few covariates are near boundary⇒ classification is easy.
⇒ fast convergence
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Definition (β-Hölder condition)

Let Tq,X∗ [η] be the Taylor expansion of η of degree q ∈ N0. If ∃Lβ > 0 such that

|η(X)− Tbβc,X∗ [η](X)| ≤ Lβ‖X − X∗‖β (∀X,X∗ ∈ X ),

η is said to be satisfying β-Hölder condition.

β is large⇒ η(X) is smooth⇒ estimation of η is easy
⇒ fast convergence
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Definition (γ-neighbour average smoothness condition)

Let η(∞)(B) := E[Y | X ∈ B]. If ∃Lγ , γ > 0 such that

|η(∞)(B(X; r))− η(X)| ≤ Lγ rγ (∀r > 0,X ∈ S(µ)),

η is said to be satisfying γ-neighbour average smoothness condition.

γ is large⇒ k-NN approximation η(∞)(B(X∗; r)) = E[Y | X ∈ B(X∗; r)] converges
to E[Y | X∗] quickly
⇒ fast convergence
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Convergence rate of k-NN

Definition (Strong density assumption (SDA) on pdf µ of X)

If ∃µmin, µmax ∈ (0,∞) such that µ(X) ∈ [µmin, µmax] for all X ∈ X , µ is said to be
satisfying strong density assumption (SDA).

Theorem (Chaudhuri and Dasgupta (2014) Theorem 4)

Let X be a compact set, and assuming that (i) η satisfies α- and γ- conditions, and (ii) µ
satisfies SDA, it holds with k∗ � n2γ/(2γ+d) that

E(ĝ(kNN)
k∗

) = O(n−(1+α)γ/(2γ+d)),

for (unweighted) k-NN plug-in classifier ĝ(kNN)
k∗

.

• A natural question: γ = β if β-Hölder condition is employed instead of γ-?
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Answer is No.

Theorem (Okuno and Shimodaira (2020) Theorem 1)

Let η(X) := E(Y | X) and let µ be the p.d.f. of X. Assuming that
(1) both of µ and ηµ are β(> 0)-Hölder,
(2) support of µ is compact,
(3) k = kn →∞, k/n→ 0, n→∞.

Then, for some b∗2 , . . . , b
∗
bβ/2c ∈ R, it holds that

η(∞)(B(X∗, rk)) = η(X∗) + b∗1 r
2
k + b∗2 r

4
k + · · ·+ b∗bβ/2cr

2bβ/2c
k + O(rβk )︸ ︷︷ ︸

bias

,

and b∗1 = 1
2d+4

1
µ(X∗)

{∆[η(X∗)µ(X∗)]− η(X∗)∆µ(X∗)} with the Laplacian operator ∆.

If β-Hölder condition is assumed instead of γ-, we have

γ = min{β, 2},

indicating that E(ĝ(kNN)
k∗ ) = O(n−2(1+α)/(4+d)) even for sufficiently smooth η.
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Optimal rate for plug-in classifiers

Audibert and Tsybakov (2007) Theorem 3.5 proves the optimal rate for plug-in
classifiers: considering β(> 0)-Hölder function η, there exists L > 0 such that

inf
g:plug-in classifier

sup
η,µ
E(g) ≥ L · n−(1+α)β/(2β+d).

Table: Convergence rates for α = 1, β = 2u (u ∈ N)

k-NN O(n−4/(4+d)) Chaudhuri and Dasgupta (2014)
Local linear O(n−4/(4+d)) Hall and Kang (2005)
Local polynomial O(n−2β/(2β+d)) Audibert and Tsybakov (2007)
Multiscale k-NN O(n−2β/(2β+d)) Okuno and Shimodaira (2020)
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Another implication of Theorem 1

Okuno and Shimodaira (2020) Theorem 1:

η(∞)(B(X∗, rk))︸ ︷︷ ︸
kNN estimator

= η(X∗) + b∗1 r2k + b∗2 r4k + · · ·+ b∗bβ/2cr
2bβ/2c
k + O(rβk )︸ ︷︷ ︸

bias

leads to a regression function

fC(r; b) := b0 + b1r2 + b2r4 + · · ·+ bCr2C (C = bβ/2c).

The function fC approximates the bias term, and extrapolation to r = 0 yields

fC(0; b̂) = b̂0 ≈ η(X∗).

Therefore, we may employ a set of even-degree polynomials

FC := {b0 + b1r21 + b2r42 + · · ·+ bCr2C | b0, b1, . . . , bC ∈ R}.
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MS-k-NN attains the optimal rate!

With user-specified `1 = 1 < `2 < · · · < `V <∞, we consider

(C1) k1 � n2β/(2β+d),
(C2) kv := min{k ∈ [n] | ‖X(k) − X∗‖2 ≥ `vrk1} for v = 2, 3, . . . ,V,

(C3) ∃Lz > 0 such that ‖ (I−PR)1
1>(I−PR)1‖∞ ≤ Lz for R = (`2ji )ij,PR = R(R>R)−1R>.

Theorem (Okuno and Shimodaira (2020) Theorem 2)

Assuming that (i) µ, ηµ are β-Hölder1 , (ii) µ satisfies SDA, (iii) C := bβ/2c ≤ V − 1, and (iv)
(C-1)–(C-3) are satisfied. Then, MS-k-NN plug-in classifier attains the optimal rate

E(ĝ(MSkNN)
k∗

) = O(n−(1+α)β/(2β+d)).

1For k-NN, only η is assumed to be β-Hölder (Chaudhuri and Dasgupta, 2014)
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Weighted k-NN
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MS-k-NN = weighted k-NN with real-valued weights

Consider a weighted k-NN estimator

η̂
(kNN)
k,w (X∗) =

k∑
i=1

wiY(i)

with weights
∑k

i=1 wi = 1. Then, MS-k-NN is equivalent to the weighted k-NN
equipped with k = kV and real-valued weights

wi :=
∑
v:i≤kv

zv
kv
∈ R (∀i ∈ [kV]), z = (z1, z2, . . . , zV) :=

(I− PR)1
1>(I− PR)1

∈ RV .
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Figure: V = 5
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Figure: V = 20

• Negative weights are essential for eradicating the bias.
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ℝ𝑑

Query

Figure: (Implicit) weights obtained in multiscale k-NN
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Other (existing) real-valued weights

Only one existing study that considers k-NN with real-valued weights is
Samworth (2012); it proves for α = 1, k∗ � n2β/(2β+d) that

inf
w∈W

E(ĝ(kNN)
k∗,w ) = O(n−(1+α)β/(2β+d)) for a conditioned set W ⊆ Rk∗ .

Samworth (2012) shows equations of the optimal weights by minimizing Taylor
series of the excess risk; solutions are obtained only for β = 2, 4. For β = 4,

wi = (a0 + aiδ
(1)
i + · · ·+ auδ

(u)
i )/k∗

with δ(`)
i := i1+2`/d − (i− 1)1+2`/d (∀` ∈ [u]), a0 ∈ R, a1 :=

1
k2/d
∗
{ (d+4)2

4 − 2(d+4)
d+2 a0},

and a2 := 1−a0−k2/d
∗ a1

k4/d
∗

.
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non−negative

Figure: Optimal real-valued weights in Samworth (2012)

• cf. Samworth (2012) also proves the rate O(n−4/(4+d)) for non-negative
weights, which is the same as unweighted k-NN.
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Numerical experiments
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Problem setup

We perform

(1) unweighted k-NN (wi = 1/k)
(2) weighted k-NN with non-negative weights wi ≥ 0
(3) weighted k-NN with real-valued weights wi ∈ R
(4) (Proposal) MS-k-NN extrapolated via r(k)
(5) (Modificaiton) MS-k-NN extrapolated via log k

on 13 datasets obtained from UCI ML Repository (Dua and Graff, 2017).

• Divided into: 70% for training, 30% for test.
• Sample mean and standard deviation of the prediction accuracy on 10

times experiments are computed.
• Regression in MS-k-NN is ridge regularized with λ = 10−4.

• V = 5, k := n4/(4+d)
train , k1 = k/V, k2 = 2k/V, ..., kV = k.
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Prediction accuracy

• n: number of observations
• d: dimension of X
• m: number of categories

Table: Best scores are bolded, and second best scores are underlined.

Dataset n d m k-NN MS-k-NN

wi = 1/k wi ≥ 0 wi ∈ R via r(k) via log k
Iris 150 4 3 0.83± 0.04 0.92± 0.05 0.92± 0.04 0.93± 0.04 0.96± 0.04
Glass iden. 213 9 6 0.58± 0.06 0.64± 0.06 0.67± 0.05 0.64± 0.05 0.64± 0.05
Ecoli 335 7 8 0.80± 0.03 0.85± 0.03 0.84± 0.02 0.85± 0.02 0.84± 0.02
Diabetes 768 8 2 0.75± 0.03 0.74± 0.03 0.70± 0.04 0.75± 0.03 0.71± 0.03
Biodeg. 1054 41 2 0.84± 0.02 0.86± 0.03 0.79± 0.02 0.86± 0.02 0.80± 0.02
Banknote 1371 4 2 0.95± 0.01 0.98± 0.01 0.97± 0.01 0.98± 0.01 0.99± 0.00
Yeast 1484 8 10 0.57± 0.02 0.58± 0.02 0.54± 0.03 0.58± 0.02 0.54± 0.02
Wire. local. 2000 7 4 0.97± 0.00 0.98± 0.00 0.98± 0.01 0.98± 0.00 0.98± 0.01
Spambase 4600 57 2 0.90± 0.01 0.91± 0.00 0.86± 0.01 0.91± 0.00 0.87± 0.01
Robot navi. 5455 24 4 0.81± 0.01 0.86± 0.01 0.81± 0.01 0.84± 0.01 0.84± 0.01
Page blocks 5473 10 5 0.95± 0.01 0.95± 0.01 0.96± 0.01 0.96± 0.01 0.96± 0.01
MAGIC 19020 10 2 0.82± 0.00 0.82± 0.00 0.84± 0.01 0.83± 0.00 0.83± 0.00
Avila 20867 10 12 0.63± 0.01 0.68± 0.01 0.70± 0.01 0.69± 0.00 0.70± 0.01
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Some remarks
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Non-asymptotic regression function specification

Okuno and Shimodaira (2020) Theorem 1 proves that

η(∞)(B(X∗; rk) = η(X∗) +
bβ/2c∑
c=1

r2bβ/2ck + O(rβk ).

for small rk ≈ 0 (as k/n→ 0, n→∞).
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Figure: Monte-Carlo expectation of k-NN estimators (black line), and the polynomials of
degrees q = 1, 2, 3 trained on r = δ, 2δ, . . . , 6δ.
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Sigmoid-based functions

• Even degree polynomials b0 + b1r21 + · · ·+ bCr2C : R→ R can be replaced
with

σ
(
b0 + b1r21 + · · ·+ bCr2C

)
: R→ [0, 1]

using the sigmoid function σ(z) = (1+ exp(−z))−1, to attain the optimal
rate. (These two functions are essentially equivalent for small r ≈ 0.)
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Figure: Sigmoid-based functions (dot lines).
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Theorem 1 revisited

η(∞)(B(X∗; r)) = E[Y | X ∈ B(X∗; r)] =

∫
B(X∗;r) η(X)µ(X)dX∫

B(X∗;r) µ(X)dX

• To apply Taylor-expansion, µ, ηµ are assumed to be β-Hölder in Theorem 1:

η(∞)(B(X∗; r)) =
C∑

c=0

b∗c r2c + O(rβ).

• If µ, ηµ are polynomial, we have a non-asymptotic expansion:

η(∞)(B(X∗; r)) = 1(C1 − C2 ≥ 0)
C1−C2∑
c=0

b∗c r2c +
∑C2−1

c=0 γ
(1)
c r2c∑C2

c=0 γ
(2)
c r2c

for some {b∗c}, {γ
(1)
c }, {γ

(2)
c } ⊂ R.
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Dependence on k-NN estimators

k-NN estimators η̂(kNN)
k1

, η̂
(kNN)
k2

, . . . , η̂
(kNN)
kV

are dependent.
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Figure: Dependence of k-NN estimators computed via Monte-Carlo simulation.

• Dependence can be considered in the regression.
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Choosing parameters

• Cross-validation is conducted for choosing the parameters k1, k2, . . . , kV .
• Instead of choosing 1 ≤ k1 < k2 < · · · < kV ≤ n, we may employ

k1 = 1, k2 = 2, . . . , kV′ = V′ (V � V′; for avoiding parameter selection):
empirically better performance in some cases.
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Conclusion
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Conclusion

• To obtain (imaginary) 0-NN estimator, k-NN estimators η̂k1 , η̂k2 , . . . , η̂kV are
extrapolated to r = 0 via radius rk := ‖X(k) − X∗‖2.
• Obtained multiscale k-NN (MS-k-NN) estimator reduces the bias of k-NN,

and it attains the optimal rate.
• MS-k-NN is equivalent to weighted k-NN with some real-valued weights.
• Weights are automatically determined via regression (in MS-k-NN); they are

different from Samworth (2012), which solves entangled equations.
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