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We had no opportunity to make a presentation for the study conducted 2 years ago...
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Background
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Regression/classification
Let (X ,Y ) ∈ X × R be a pair of covariate and response variables, defined with

f (x) = E(Y | X = x).

In the regression problem, we estimate the function f from i.i.d. observations {(xi , yi)}ni=1.
▶ fθ(x) = ⟨θ1, x⟩+ θ2 (linear regression),
▶ fθ(x) = ⟨θ3, σ(⟨θ1, x⟩+ θ2)⟩+ θ4 (neural network), and so forth.

Problem in this study:
In real-world situations, several different forms of covariates are mixed. For instance,

X =
⋃
q∈N
Rq;

typical regression functions cannot be applied to both x1 ∈ Rq1 and x2 ∈ Rq2 simultaneously.
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Examples

(Example 1) Mixture of pictures/drawings/texts

“Chimpanzee”

“Gorilla”

“Giraffe”
“Ape”

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

𝒙6

𝒙8
𝒙7 𝒙9

𝑑 , = 0.1,

𝑑 , = 1.3, …“Giraffe”

▶ xi : an image or a word,
▶ yi : whether the object represents primates (霊長類 in Japanese) or not.
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(Example 2) Time series of different lengths

▶ xi : stock price record in ith month (∈ R“days in ith month”),
▶ yi : whether the price increases (yi = 1) or decreases (yi = 0).
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Distance-based approaches

Let X = Rq, h > 0 and consider a kernel smoother

f̂ (KS)
h (x) =

1
|Nh(x)|

∑
j∈Nh(x)

yj , Nh(x) := {i | d(x, xi) ≤ h}.

Then, the distance d can be replaced with other discrepancy functions formally. For
instance, if {xi} represents the time-series of different lengths, we may employ

d(x, x′) := DynamicTimeWarping(x, x′).

 Distance-based approaches are (formally) widely-applicable.

Kernel smoother with k = |Nh(x)| is called k-nearest neighbour (k-NN) estimator.
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(Higher-order) asymptotic bias and its correction

Consider the simple case X = Rq. While the kernel smoother and k-NN estimators are
consistent, i.e.,

f̂ →p f ,

they are not minimax optimal if f is highly-smooth. Conventional local polynomial (LPoR)
estimator corrects the asymptotic bias.

▶ KS and kNN:  widely-applicable,  not optimal.
▶ LPoR:  not widely-applicable,  optimal.

Problem: can we correct the asymptotic bias while holding the applicability?
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Proposal
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Overview

KS

𝑘NN

LPoR

LRR

MS𝑘NN

Bias-Correction

(OS2020)

(CONS2021)

Minimax optimal

Applicable (radial)

Bias-Correction

Proposals
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Multiscale k-NN (Okuno and Shimodaira, NeurIPS2020)
k-NN estimator has larger bias as k increases.

Idea
Extrapolating k-NN estimators from k = k1, k2, . . . , kV to r = 0 (via rk := d(x, x(k))) yields
imaginary 0-NN estimator, which is also called multiscale k-NN (MSkNN) estimator.

𝔼( መ𝑓𝑘
𝑘NN

𝑥 )

𝑓 𝑥

መ𝑓𝑘
𝑘NN

𝑥

True prob.

k-NN for an instance

 minimax optimal and widely-applicable.
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Local Radial Regression (Cao, Okuno, Nakagawa and Shimodaira)

We define a local radial regression (LRR):

f̂ (LRR)(x) = τ̂(0), τ̂ := argmin
τ∈P(1,q)

n∑
i=1

w(ri){Yi − τ(ri)}2,

equipped with the radial distance ri = d(x, xi), decreasing non-negative function w and a
polynomial function τ to be trained.

 minimax optimal and widely-applicable.
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Theory

We prove the convergence rate for the plug-in type classifier

ĝ(x) := 1(f̂ (x) ≥ 1/2) ∈ {0, 1}.

Going through a very bothersome calculation to prove the optimality, we have:

Abbrev. Application Higher-order opt.
Multi-layer perceptron MLP/NN  limited  No
Kernel smoother KS  wide  No
k-Nearest neighbour kNN  wide  No
Local polynomial regression LPoR  limited  Optimal
Multiscale kNN (OS2020) MSkNN  wide  Optimal
Local radial regression (CONS2021) LRR  wide  Optimal

cf. optimal rate is E(ĝn) ≍ n−2β/(2β+d) when assuming β-Hölder condition.
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Proof overview

The optimality is shown with d(x, x′) = ∥x− x′∥2. For multiscale k-NN, the k-NN estimator
satisfies

f̂k(x∗) ≈ P(Y = 1 | ∥X − x∗∥2 ≤ r)

= f (X∗) +
⌊β/2⌋∑
c=1

b∗c(x∗)r
2c︸ ︷︷ ︸

(⋆)

+δβ,r (x∗), |δβ,r (x∗)| ≲ rβ,

for r = r(k) := ∥x∗ − x(k)∥2 and large k ∈ N. Therefore, multiscale k-NN estimator removes
the higher-order bias term (⋆) by the extrapolation (via regression).
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Experiments

Okuno, Cao, Nakagawa, and Shimodaira Optimal classification via radial distance 15 / 20



Table: n: sample size, d : dimension, m: ♯categories.
Sample average and the standard deviation for the prediction accuracy are computed on 10 times
experiments. Best scores are bolded, and second best scores are underlined.

Dataset n d m
kNN MSkNN

wi = 1/k wi ≥ 0 wi ∈ R via r(k) via log k
Iris 150 4 3 0.83± 0.04 0.92± 0.05 0.92± 0.04 0.93± 0.04 0.96± 0.04
Glass identification 213 9 6 0.58± 0.06 0.64± 0.06 0.67± 0.05 0.64± 0.05 0.64± 0.05
Ecoli 335 7 8 0.80± 0.03 0.85± 0.03 0.84± 0.02 0.85± 0.02 0.84± 0.02
Diabetes 768 8 2 0.75± 0.03 0.74± 0.03 0.70± 0.04 0.75± 0.03 0.71± 0.03
Biodegradation 1054 41 2 0.84± 0.02 0.86± 0.03 0.79± 0.02 0.86± 0.02 0.80± 0.02
Banknote 1371 4 2 0.95± 0.01 0.98± 0.01 0.97± 0.01 0.98± 0.01 0.99± 0.00
Yeast 1484 8 10 0.57± 0.02 0.58± 0.02 0.54± 0.03 0.58± 0.02 0.54± 0.02
Wireless localization 2000 7 4 0.97± 0.00 0.98± 0.00 0.98± 0.01 0.98± 0.00 0.98± 0.01
Spambase 4600 57 2 0.90± 0.01 0.91± 0.00 0.86± 0.01 0.91± 0.00 0.87± 0.01
Robot navigation 5455 24 4 0.81± 0.01 0.86± 0.01 0.81± 0.01 0.84± 0.01 0.84± 0.01
Page blocks 5473 10 5 0.95± 0.01 0.95± 0.01 0.96± 0.01 0.96± 0.01 0.96± 0.01
MAGIC 19020 10 2 0.82± 0.00 0.82± 0.00 0.84± 0.01 0.83± 0.00 0.83± 0.00
Avila 20867 10 12 0.63± 0.01 0.68± 0.01 0.70± 0.01 0.69± 0.00 0.70± 0.01
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Application to Stock Prediction

MSkNN and LRR are applied to the stock prediction problem of S&P500, S&P500/TSX,
EURO, ...
▶ xi : stock price record in ith month (∈ R“days in ith month”),
▶ yi : whether the price increases (yi = 1) or decreases (yi = 0).
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Application to Stock Prediction

Table: Predictive classification accuracy. A higher score is better: the best and the second-best are
bolded and underlined, respectively.

S&P 500 S&P/TSX EURO. FTSE. DAX CAC. TOPIX Hang Seng
random 0.492 0.495 0.498 0.482 0.492 0.490 0.493 0.486
k-NN 0.574 0.594 0.510 0.500 0.530 0.525 0.500 0.564
MSkNN 0.604 0.559 0.525 0.485 0.545 0.495 0.515 0.530
LRLR 0.649 0.609 0.505 0.574 0.609 0.550 0.465 0.574
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Conclusion
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Conclusion

Abbrev. Applicability Optimality
Multi-layer perceptron MLP/NN  limited  No
Kernel smoother KS  Good  No
k-Nearest neighbour kNN  Good  No
Local polynomial regression LPoR  Less  Optimal
Multiscale kNN (OS2020) MSkNN  Good  Optimal
Local radial regression (CONS2021) LRR  Good  Optimal

▶ We proposed a widely-applicable and optimal MSkNN and LRR estimators.
▶ This study was mainly based on:

(1) Okuno and Shimodaira (NeurIPS2020)
(2) Cao, Okuno, Nakagawa, and Shimodaira (arXiv:2112.13951)

▶ Contact Info.: okuno@ism.ac.jp
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