Optimal nonparametric classification via radial distance

A. Okuno^{1,2}, R. Cao^{3,2}, K. Nakagawa⁴, H. Shimodaira^{3,2}

¹Institute of Statistical Mathematics ²RIKEN AIP ³Kyoto University ⁴Nomura Asset Management Co., Ltd.

Related Publications of Ours

In English:

- <u>Akifumi Okuno</u> and Hidetoshi Shimodaira. "Extrapolation Towards Imaginary 0-Nearest Neighbour and Its Improved Convergence Rate", Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pages 21889-21899.
- (2) Ruixing Cao*, <u>Akifumi Okuno</u>*, Kei Nakagawa and Hidetoshi Shimodaira. "Improving Nonparametric Classification via Local Radial Regression with an Application to Stock Prediction", 23 pages. **arXiv:2112.13951**. (*First co-author)

In Japanese (JSAI Annual Proceedings):

- (3) Ruixing Cao, Takuma Tanaka, <u>Akifumi Okuno</u>, Hidetoshi Shimodaira. "A Study on Regression and Loss Functions for Multiscale k-Nearest Neighbour". 2021. 4pages.
- (4) Takuma Tanaka, <u>Akifumi Okuno</u>, Hidetoshi Shimodaira. "Extreme Multi-Label Classification of Images via Multiscale *k*-Nearest Neighbour". 2021. 4pages.

We had no opportunity to make a presentation for the study conducted 2 years ago...

Background

Regression/classification

Let $(X, Y) \in \mathcal{X} \times \mathbb{R}$ be a pair of covariate and response variables, defined with

$$f(x) = \mathbb{E}(Y \mid X = x).$$

In the regression problem, we estimate the function f from i.i.d. observations $\{(x_i, y_i)\}_{i=1}^n$.

•
$$f_{\theta}(x) = \langle \theta_1, x \rangle + \theta_2$$
 (linear regression),

►
$$f_{\theta}(x) = \langle \theta_3, \sigma(\langle \theta_1, x \rangle + \theta_2) \rangle + \theta_4$$
 (neural network), and so forth.

Problem in this study:

In real-world situations, several different forms of covariates are mixed. For instance,

$$\mathcal{X} = igcup_{q \in \mathbb{N}} \mathbb{R}^q;$$

typical regression functions cannot be applied to both $x_1 \in \mathbb{R}^{q_1}$ and $x_2 \in \mathbb{R}^{q_2}$ simultaneously.

Examples

(Example 1) Mixture of pictures/drawings/texts

 \triangleright **x**_{*i*}: an image or a word,

▶ *y_i*: whether the object represents primates (霊長類 in Japanese) or not.

Okuno, Cao, Nakagawa, and Shimodaira

(Example 2) Time series of different lengths

▶ \mathbf{x}_i : stock price record in *i*th month ($\in \mathbb{R}^{\text{"days in$ *i* $th month"}}$),

▶ y_i : whether the price increases $(y_i = 1)$ or decreases $(y_i = 0)$.

Distance-based approaches

Let $\mathcal{X} = \mathbb{R}^q$, h > 0 and consider a kernel smoother

$$\hat{f}_h^{(\mathrm{KS})}(\mathbf{x}) = \frac{1}{|\mathcal{N}_h(\mathbf{x})|} \sum_{j \in \mathcal{N}_h(\mathbf{x})} y_j, \quad \mathcal{N}_h(\mathbf{x}) := \{i \mid d(\mathbf{x}, \mathbf{x}_i) \leq h\}.$$

Then, the distance *d* can be replaced with other discrepancy functions formally. For instance, if $\{\mathbf{x}_i\}$ represents the time-series of different lengths, we may employ

 $d(\mathbf{x}, \mathbf{x}') := DynamicTimeWarping(\mathbf{x}, \mathbf{x}').$

Distance-based approaches are (formally) widely-applicable.

Kernel smoother with $k = |\mathcal{N}_h(\mathbf{x})|$ is called *k*-nearest neighbour (k-NN) estimator.

(Higher-order) asymptotic bias and its correction

Consider the simple case $\mathcal{X} = \mathbb{R}^{q}$. While the kernel smoother and *k*-NN estimators are *consistent*, i.e.,

$$\hat{f}
ightarrow {}^{p} f$$
 ,

they are *not minimax optimal* if f is highly-smooth. Conventional local polynomial (LPoR) estimator corrects the asymptotic bias.

- ► KS and *k*NN: *⁽ widely-applicable*, *⁽ not optimal*.
- ▶ LPoR: 🦃 not widely-applicable, 🖒 optimal.

Problem: can we correct the asymptotic bias while holding the applicability?

Proposal

Overview

Multiscale k-NN (Okuno and Shimodaira, NeurIPS2020)

k-NN estimator has larger bias as k increases.

Idea

Extrapolating k-NN estimators from $k = k_1, k_2, ..., k_V$ to r = 0 (via $r_k := d(\mathbf{x}, \mathbf{x}_{(k)})$) yields imaginary 0-NN estimator, which is also called *multiscale k-NN (MSkNN) estimator*.

in minimax optimal and widely-applicable.

Local Radial Regression (Cao, Okuno, Nakagawa and Shimodaira)

We define a *local radial regression (LRR)*:

$$\hat{f}^{(\mathrm{LRR})}(\mathbf{x}) = \hat{\tau}(0), \quad \hat{\tau} := \operatorname*{arg\,min}_{\tau \in \mathcal{P}(1,q)} \sum_{i=1}^{n} w(r_i) \{Y_i - \tau(r_i)\}^2,$$

equipped with the radial distance $r_i = d(\mathbf{x}, \mathbf{x}_i)$, decreasing non-negative function w and a polynomial function τ to be trained.

ninimax optimal and widely-applicable.

Theory

We prove the convergence rate for the plug-in type classifier

$$\hat{g}(x) := \mathbb{1}(\hat{f}(x) \ge 1/2) \in \{0, 1\}.$$

Going through a very bothersome calculation to prove the optimality, we have:

	Abbrev.	Application	Higher-order opt.
Multi-layer perceptron	MLP/NN	🐶 limited	🐶 No
Kernel smoother	KS	🖒 wide	🐶 No
k-Nearest neighbour	<i>k</i> NN	🖒 wide	🐶 No
Local polynomial regression	LPoR	🐶 limited	🖒 Optimal
Multiscale kNN (OS2020)	MS <i>k</i> NN	🖒 wide	🖒 Optimal
Local radial regression (CONS2021)	LRR	🖒 wide	🖒 Optimal

cf. optimal rate is $\mathcal{E}(\hat{g}_n) \asymp n^{-2\beta/(2\beta+d)}$ when assuming β -Hölder condition.

Proof overview

The optimality is shown with $d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_2$. For multiscale k-NN, the k-NN estimator satisfies

$$egin{aligned} &\hat{f}_k(\mathbf{x}_*) pprox \mathbb{P}(Y=1 \mid \|X-\mathbf{x}_*\|_2 \leq r) \ &= f(X_*) + \sum_{c=1}^{|eta/2|} \underbrace{b_c^*(\mathbf{x}_*)r^{2c}}_{(\star)} + \delta_{eta,r}(\mathbf{x}_*), \quad |\delta_{eta,r}(\mathbf{x}_*)| \lesssim r^eta, \end{aligned}$$

for $r = r(k) := \|\mathbf{x}_* - \mathbf{x}_{(k)}\|_2$ and large $k \in \mathbb{N}$. Therefore, multiscale k-NN estimator removes the higher-order bias term (*) by the extrapolation (via regression).

Experiments

Table: *n*: sample size, *d*: dimension, *m*: ‡categories.

Sample average and the standard deviation for the prediction accuracy are computed on 10 times experiments. Best scores are **bolded**, and second best scores are <u>underlined</u>.

Datacat	п	d	т		<i>k</i> NN	MS k NN		
Dataset				$w_i = 1/k$	$w_i \geq 0$	$w_i \in \mathbb{R}$	via r(k)	via log k
Iris	150	4	3	0.83 ± 0.04	0.92 ± 0.05	0.92 ± 0.04	$\underline{0.93} \pm 0.04$	$\textbf{0.96} \pm 0.04$
Glass identification	213	9	6	0.58 ± 0.06	0.64 ± 0.06	0.67 ± 0.05	0.64 ± 0.05	0.64 ± 0.05
Ecoli	335	7	8	0.80 ± 0.03	$\boldsymbol{0.85} \pm 0.03$	$\underline{0.84} \pm 0.02$	$\boldsymbol{0.85} \pm 0.02$	0.84 ± 0.02
Diabetes	768	8	2	$\textbf{0.75} \pm 0.03$	0.74 ± 0.03	0.70 ± 0.04	$\boldsymbol{0.75} \pm 0.03$	0.71 ± 0.03
Biodegradation	1054	41	2	$\underline{0.84} \pm 0.02$	$\boldsymbol{0.86} \pm 0.03$	0.79 ± 0.02	$\textbf{0.86} \pm 0.02$	0.80 ± 0.02
Banknote	1371	4	2	0.95 ± 0.01	$\underline{0.98} \pm 0.01$	0.97 ± 0.01	$\underline{0.98} \pm 0.01$	0.99 ± 0.00
Yeast	1484	8	10	0.57 ± 0.02	0.58 ± 0.02	0.54 ± 0.03	0.58 ± 0.02	0.54 ± 0.02
Wireless localization	2000	7	4	$\underline{0.97}\pm0.00$	0.98 ± 0.00	0.98 ± 0.01	0.98 ± 0.00	$\textbf{0.98} \pm 0.01$
Spambase	4600	57	2	$\underline{0.90}\pm0.01$	0.91 ± 0.00	0.86 ± 0.01	0.91 ± 0.00	0.87 ± 0.01
Robot navigation	5455	24	4	0.81 ± 0.01	0.86 ± 0.01	0.81 ± 0.01	$\underline{0.84} \pm 0.01$	$\underline{0.84} \pm 0.01$
Page blocks	5473	10	5	$\underline{0.95} \pm 0.01$	$\underline{0.95} \pm 0.01$	$\textbf{0.96} \pm 0.01$	0.96 ± 0.01	$\textbf{0.96} \pm 0.01$
MAGIC	19020	10	2	0.82 ± 0.00	0.82 ± 0.00	$\textbf{0.84} \pm 0.01$	$\underline{0.83} \pm 0.00$	$\underline{0.83} \pm 0.00$
Avila	20867	10	12	0.63 ± 0.01	0.68 ± 0.01	$\textbf{0.70} \pm 0.01$	0.69 ± 0.00	$\textbf{0.70} \pm 0.01$

Okuno, Cao, Nakagawa, and Shimodaira

Application to Stock Prediction

 $\mathsf{MS}k\mathsf{NN}$ and LRR are applied to the stock prediction problem of S&P500, S&P500/TSX, EURO, …

- ▶ \mathbf{x}_i : stock price record in *i*th month ($\in \mathbb{R}^{\text{"days in$ *i* $th month"}}$),
- ▶ y_i : whether the price increases $(y_i = 1)$ or decreases $(y_i = 0)$.

Application to Stock Prediction

Table: Predictive classification accuracy. A higher score is better: the best and the second-best are bolded and underlined, respectively.

	S&P 500	S&P/TSX	EURO.	FTSE.	DAX	CAC.	ΤΟΡΙΧ	Hang Seng
random	0.492	0.495	0.498	0.482	0.492	0.490	0.493	0.486
<i>k</i> -NN	0.574	0.594	0.510	0.500	0.530	0.525	0.500	0.564
MS <i>k</i> NN	0.604	0.559	0.525	0.485	0.545	0.495	0.515	0.530
LRLR	0.649	0.609	0.505	0.574	0.609	0.550	0.465	0.574

Conclusion

Conclusion

	Abbrev.	Applicability	Optimality
Multi-layer perceptron	MLP/NN	🖓 limited	🐶 No
Kernel smoother	KS	🖒 Good	🐶 No
<i>k</i> -Nearest neighbour	<i>k</i> NN	🖒 Good	🐶 No
Local polynomial regression	LPoR	🐶 Less	🖒 Optimal
Multiscale <i>k</i> NN (OS2020)	MS <i>k</i> NN	🖒 Good	🖒 Optimal
Local radial regression (CONS2021)	LRR	🖒 Good	🖒 Optimal

▶ We proposed a *widely-applicable* and *optimal* MSkNN and LRR estimators.

- This study was mainly based on:
 - (1) Okuno and Shimodaira (NeurIPS2020)
 - (2) Cao, Okuno, Nakagawa, and Shimodaira (arXiv:2112.13951)

Contact Info.: okuno@ism.ac.jp