Outlier-Robust Neural Network Training: Efficient Optimization of
Transformed Trimmed Loss with Variation Regularization
(Submitted. arXiv:2308.02293)

Akifumi Okuno®?, Shotaro Yagishita®

1ISM, 2RIKEN

Okuno and Yagishita ARTL 1/30


https://doi.org/10.48550/arXiv.2308.02293

Background: Traditional Robust Statistics
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(Typical) Robust Linear Regression

Robust Linear Regression

_ Linear Regression
(Usual)

°
Outlier

> Aims to ignore outliers.
» Uses prediction model with low-degrees-of-freedom (e.g., linear model).

> Can we apply the traditional approach to highly expressive models?
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Outlier-Robust Neural Network Training
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What did we do?

» We proposed an outlier-robust and flexible regression method.
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Figure: E[Y | X = x] = £i(x) = sin(2x1) cos(2x2).
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(Typical) Robust Linear Regression
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Neural Network Training

(Squared Loss)
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Neural Network Training

(Squared Loss)

Neural Network

Perfectly
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Neural Network Training Neural Network

(Squared Loss)

Even with robust loss,
the situation unchanged.
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Actual Robust Loss + NN (+Gradient Descent)
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e True Data e True Data
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What we really wanted to do. ®  Neural Network

Flexible fitting
Ignore outliers

7

o Outlier
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So... what?

» We want the regression model f3(x) to be nicely flexitle (“wiggly”),
P> but not excessively so.

We want to incorporate something like “stiffness”
Into the regression function.
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Regularization of Function Variation
Higher-Order Variation Regularization (HOVR; Okuno, arXiv:2308.02293v1):

0 fy(x
qufG /‘ 6

For example, in the case of a regression function fg(x) = >, 0;¢;(x) using an orthonormal
basis,

Cr2(fo) S 11613
can be interpreted as a generalization of parameter regularization.

» The derivatives can be computed using “autograd”.

» The integration can be avoided probabilistically (without explicit computation): use
a “stochastic” gradient method.
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In other words?
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Figure: Cyo(f) ~ 0.64 Figure: G o(f) ~ 197

» Can suppress excessive variations.
» Corresponds to parameter regularization in linear/kernel regression models.

» For neural networks: This study.
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Figure: Weight decay (i.e., ridge) Figure: HOVR

> Akifumi Okuno, “A stochastic optimization approach to train non-linear neural networks
with regularization of higher-order total variation”, arXiv:2308.02293v1.

» By using stochastic gradient methods,
integral-type regularization can be minimized exactly.
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Classical Robust “Trimmed” Loss

Let the residuals be defined as r;(6) := y; — fa(x;), and reorder the indices such that

11:0) ()] < [r2:0)(0) < -+ < r(mg)(6)]-

Then,
h

1
Th(r(0)) = " Z f(/;e)(e)z
i=1
is called the Trimmed Loss, which is known as a robust loss function.

» Qutliers are expected to be “trimmed".
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Our ldea

> Wouldn't it be a good idea to combine them...?

> Regularization prevents excessive variations, while robust loss ignores outliers.

. 1
Loss function: 5 Th(r(8))+ X- Ckq(fo)
~— P

Robust Loss stiffen” the function

As will be discussed,
» The breakdown point (a traditional robust metric) is proved to be high.
> Efficient optimization algorithms can be developed.
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Breakdown Point Analysis

Let Z(M be a dataset obtained by replacing m pairs (x;, yi) in Z = {(x;, yi)}!_;.
The breakdown point is defined as:

)  m
Ek.q(fg, Z) = min {n

sup Ck,q(f, Gz ):oo}.
Z(m

Extension of Alfons et al. (2013) to Our Setting

—h+1
Eiofs 2) > !

» |n other words, the method can tolerate up to n — h outliers in the data.

» The above theorem holds even for nonlinear models such as neural networks.
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Efficient Optimization

> With an “auxiliary” parameter £, the Trimmed Loss T, can be separated from the
parameter 6.

» Co-author of this paper, Dr. Yagishita, proposed this separation recently:

Yagishita (arXiv:2410.04554)

> Th(r(®)) = min {nr(@) JERE Th<€)}

Transformed Trimmed Loss (TTL)

» This transformation makes the optimization process easier.
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https://arxiv.org/abs/2410.04554

Combination of HOVR and Trimmed Loss

STHrO)+ A Ceglf) = min{Uz(6.€) — Vi(6))
—_—— 13

Robust Loss stiffen the function

where

1 .
Ux(8,€) = E{Hr(@) — €113+ 11€113} + ACk 4(fs) is Nonconvex and smooth,

1
Vi(€) = =|1€]13 — Th(€) is Convex and nonsmooth.
n

In other words, minimizing Trimmed Loss + HOVR corresponds to minimizing
Augmented and Regularized Trimmed Loss (ARTL)
Fax(8,€) = Ux(8, &) — Vin(§)

with respect to the augmented parameters (0, £).
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Proposed Optimization Algorithm

> Let ugt)(Q(t), ¢(D) be an unbiased stochastic gradient of Uy (6),
» Let vy(&) be a subgradient of V(§).

» Define gff%(@ §) = uﬁt)(& €) — (0, vi(§)).

Stochastic Gradient-Supergradient Descent (SGSD)
(0D, ¢(t+1)) o (p(1) (D) — wtg;t)(g(t)' ¢0),

> This method overcomes issues related to integral terms and non-differentiable points.
» Exact convergence can be demonstrated.
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Details Omitted, But...

» Differentiability with respect to 6 is assumed (e.g., Sigmoid activation).

» Several assumptions, such as unbiasedness of the gradient, are imposed.

A Simple Form of the Convergence Theorem

If the learning rate is set as wy = a(1 + t)~1/2, then

E inf

= O(T *(log T)?).
s ( (log T)™%)

(t7) ¢(77)
aU}\(e ')g ) - (0, V)

9(6.¢

2

» 71 is a randomly chosen stopping time.

» The gradient converges to O (stationary point) except for the freedom in the
subgradient.
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Going Back to the First Example
» A multi-layer perceptron with (input) 2 dimensions - 100 - 100 - 100 - (output) 1

dimension.
» Over 20,000 parameters with 3% outliers introduced.

Linear+Huber NN+Huber NN+Tukey TTL+HOVR(k=2)
® TueData o TueData
® Outliers ® Outliers
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(b) NN+Huber (c) NN+Tukey (d) Proposal
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Figure: f,(x) = sin(2x7) cos(2x2).
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True Function: volcano

(a) Groundtruth
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Type 2:

Linear with Huber Loss
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© stripe

Type 3

Linear with Huber Loss
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Type 4: plane

Linear with Huber Loss
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Non-linear Linear

checkered volcano stripe plane
Linear Reg. with Huber's Loss 0.124(0.004) 0.130(0.003) 0.498(0.016) | 0.001(0.001)
Linear Reg. with RANSAC 0.140(0.013) 0.186(0.058) 0.871(0.277) | 0.001(0.001)
Support Vector Reg. with RBF Kernel | 0.127(0.008) 0.113(0.020) 0.508(0.031) | 0.006 (0.002)
NN with Huber's Loss 0.634(0.608) 1.031(0.861) 0.488(0.475) | 0.043(0.025)
NN with Tukey's Loss 0.458(0.655) 0.413(0.630) 0.304(0.395) | 0.017(0.009)
NN with Label Noise Reg. 1.155(1.068) 0.872(0.659) 0.561(0.498) | 0.756(0.945)
NN with RANSAC 0.160(0.036) 0.142(0.009) 0.527(0.018) | 0.011(0.016)
NN with ARTL (h=0.9n, k = 1) 0 088 (0.090) 0.082(0.076) 0.223(0.238) | 0.010(0.004)
NN with ARTL (h=0.9n, k = 2) 61(0.016) 0.040(0.029) 0.119(0.047) | 0.007 (0.001)
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Parameter Selection

» Cross-Validation using Robust Trimmed Loss

PMSE vs. Validation (Correlation: 0.86)
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Summary

» Even if the loss function is robust, neural networks may overfit to outliers.
> Proposed HOVR "stiffen" expressive models including neural networks.

» Proposed SGSD efficiently minimizes the ARTL, that combines the trimmed loss and
variation regularization.

My personal webpage: https://okuno.net
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