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Background: Traditional Robust Statistics
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▶ Aims to ignore outliers.
▶ Uses prediction model with low-degrees-of-freedom (e.g., linear model).
▶ Can we apply the traditional approach to highly expressive models?
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Outlier-Robust Neural Network Training
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What did we do?

▶ We proposed an outlier-robust and flexible regression method.

(a) Linear+Huber (b) NN+Huber (c) NN+Tukey (d) Proposal

Figure: E[Y | X = x ] = f∗(x) = sin(2x1) cos(2x2).

Okuno and Yagishita ARTL 5 / 30



Okuno and Yagishita ARTL 6 / 30



Okuno and Yagishita ARTL 7 / 30



Okuno and Yagishita ARTL 8 / 30



Okuno and Yagishita ARTL 9 / 30



Okuno and Yagishita ARTL 10 / 30



Okuno and Yagishita ARTL 11 / 30



So... what?

▶ We want the regression model fθ(x) to be nicely flexitle (“wiggly”),
▶ but not excessively so.

We want to incorporate something like “stiffness”
into the regression function.
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Regularization of Function Variation

Higher-Order Variation Regularization (HOVR; Okuno, arXiv:2308.02293v1):

Ck,q(fθ) :=
∫
Ω

∣∣∣∣∂k fθ(x)
∂kx

∣∣∣∣qdx .

For example, in the case of a regression function fθ(x) =
∑

j θjφj(x) using an orthonormal
basis,

Ck,2(fθ) ≲ ∥θ∥22
can be interpreted as a generalization of parameter regularization.

▶ The derivatives can be computed using “autograd”.
▶ The integration can be avoided probabilistically (without explicit computation): use

a “stochastic” gradient method.
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In other words?
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Figure: C2,2(f ) ≈ 0.64
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Figure: C2,2(f ) ≈ 197

▶ Can suppress excessive variations.
▶ Corresponds to parameter regularization in linear/kernel regression models.
▶ For neural networks: This study.
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Figure: Weight decay (i.e., ridge)
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Figure: HOVR

▶ Akifumi Okuno, “A stochastic optimization approach to train non-linear neural networks
with regularization of higher-order total variation”, arXiv:2308.02293v1.

▶ By using stochastic gradient methods,
integral-type regularization can be minimized exactly.
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Classical Robust “Trimmed” Loss

Let the residuals be defined as ri(θ) := yi − fθ(xi), and reorder the indices such that

|r(1;θ)(θ)| ≤ |r(2;θ)(θ)| ≤ · · · ≤ |r(n;θ)(θ)|.

Then,

Th(r(θ)) =
1
n

h∑
i=1

r(i ;θ)(θ)
2

is called the Trimmed Loss, which is known as a robust loss function.

▶ Outliers are expected to be “trimmed”.
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Our Idea

▶ Wouldn’t it be a good idea to combine them...?
▶ Regularization prevents excessive variations, while robust loss ignores outliers.

Loss function:
1
2
Th(r(θ))︸ ︷︷ ︸

Robust Loss

+ λ · Ck,q(fθ)︸ ︷︷ ︸
“stiffen” the function

As will be discussed,
▶ The breakdown point (a traditional robust metric) is proved to be high.
▶ Efficient optimization algorithms can be developed.
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Breakdown Point Analysis

Let Z̃ (m) be a dataset obtained by replacing m pairs (xi , yi) in Z = {(xi , yi)}ni=1.
The breakdown point is defined as:

E∗k,q(fθ̂,Z ) := min

{
m
n

∣∣∣∣∣ supZ̃ (m)

Ck,q(fθ̂(Z̃ (m))
) =∞

}
.

Extension of Alfons et al. (2013) to Our Setting

E∗k,q(fθ̂,Z ) ≥
n − h + 1

n
.

▶ In other words, the method can tolerate up to n − h outliers in the data.
▶ The above theorem holds even for nonlinear models such as neural networks.
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Efficient Optimization

▶ With an “auxiliary” parameter ξ, the Trimmed Loss Th can be separated from the
parameter θ.

▶ Co-author of this paper, Dr. Yagishita, proposed this separation recently:

Yagishita (arXiv:2410.04554)

1
2
Th(r(θ)) = min

ξ∈Rn

{
1
n
∥r(θ)− ξ∥22 + Th(ξ)

}
︸ ︷︷ ︸

Transformed Trimmed Loss (TTL)

▶ This transformation makes the optimization process easier.
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Combination of HOVR and Trimmed Loss

1
2
Th(r(θ))︸ ︷︷ ︸

Robust Loss

+ λ · Ck,q(fθ)︸ ︷︷ ︸
stiffen the function

= min
ξ
{Uλ(θ, ξ)− Vh(ξ)}

where

Uλ(θ, ξ) =
1
n
{∥r(θ)− ξ∥22 + ∥ξ∥22}+ λCk,q(fθ) is Nonconvex and smooth,

Vh(ξ) =
1
n
∥ξ∥22 − Th(ξ) is Convex and nonsmooth.

In other words, minimizing Trimmed Loss + HOVR corresponds to minimizing

Augmented and Regularized Trimmed Loss (ARTL)

Fh,λ(θ, ξ) = Uλ(θ, ξ)− Vh(ξ)

with respect to the augmented parameters (θ, ξ).
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Proposed Optimization Algorithm

▶ Let u(t)
λ (θ(t), ξ(t)) be an unbiased stochastic gradient of Uλ(θ),

▶ Let vh(ξ) be a subgradient of Vh(ξ).

▶ Define g(t)
h,λ(θ, ξ) = u(t)

λ (θ, ξ)− (0, vh(ξ)).

Stochastic Gradient-Supergradient Descent (SGSD)

(θ(t+1), ξ(t+1))← (θ(t), ξ(t))− ωtg
(t)
λ (θ(t), ξ(t)).

▶ This method overcomes issues related to integral terms and non-differentiable points.
▶ Exact convergence can be demonstrated.
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Details Omitted, But...

▶ Differentiability with respect to θ is assumed (e.g., Sigmoid activation).
▶ Several assumptions, such as unbiasedness of the gradient, are imposed.

A Simple Form of the Convergence Theorem

If the learning rate is set as ωt = α(1 + t)−1/2, then

E

 inf
v∈∂Vh(ξ)

∥∥∥∥∥∂Uλ(θ(τT ), ξ(τT ))

∂(θ, ξ)
− (0, v)

∥∥∥∥∥
2

2

 = O(T−1/4(logT )1/2).

▶ τT is a randomly chosen stopping time.
▶ The gradient converges to 0 (stationary point) except for the freedom in the

subgradient.
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Going Back to the First Example
▶ A multi-layer perceptron with (input) 2 dimensions - 100 - 100 - 100 - (output) 1

dimension.
▶ Over 20,000 parameters with 3% outliers introduced.

(a) Linear+Huber (b) NN+Huber (c) NN+Tukey (d) Proposal

Figure: f∗(x) = sin(2x1) cos(2x2).
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Type 1: checkered

(a) Groundtruth (b) Linear+Huber (c) Linear+RANSAC (d) SVR+RBF

(e) NN+Huber (f) NN+Tukey (g) NN+RANSAC (h) Proposal

Okuno and Yagishita ARTL 24 / 30



Type 2: volcano

(a) Groundtruth (b) Linear+Huber (c) Linear+RANSAC (d) SVR+RBF

(e) NN+Huber (f) NN+Tukey (g) NN+RANSAC (h) Proposal
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Type 3: stripe

(a) Groundtruth (b) Linear+Huber (c) Linear+RANSAC (d) SVR+RBF

(e) NN+Huber (f) NN+Tukey (g) NN+RANSAC (h) Proposal
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Type 4: plane

(a) Groundtruth (b) Linear+Huber (c) Linear+RANSAC (d) SVR+RBF

(e) NN+Huber (f) NN+Tukey (g) NN+RANSAC (h) Proposal
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Non-linear Linear
checkered volcano stripe plane

Linear Reg. with Huber’s Loss 0.124 (0.004) 0.130 (0.003) 0.498 (0.016) 0.001 (0.001)
Linear Reg. with RANSAC 0.140 (0.013) 0.186 (0.058) 0.871 (0.277) 0.001 (0.001)
Support Vector Reg. with RBF Kernel 0.127 (0.008) 0.113 (0.020) 0.508 (0.031) 0.006 (0.002)
NN with Huber’s Loss 0.634 (0.608) 1.031 (0.861) 0.488 (0.475) 0.043 (0.025)
NN with Tukey’s Loss 0.458 (0.655) 0.413 (0.630) 0.304 (0.395) 0.017 (0.009)
NN with Label Noise Reg. 1.155 (1.068) 0.872 (0.659) 0.561 (0.498) 0.756 (0.945)
NN with RANSAC 0.160 (0.036) 0.142 (0.009) 0.527 (0.018) 0.011 (0.016)
NN with ARTL (h = 0.9n, k = 1) 0.088 (0.090) 0.082 (0.076) 0.223 (0.238) 0.010 (0.004)
NN with ARTL (h = 0.9n, k = 2) 0.061 (0.016) 0.040 (0.029) 0.119 (0.047) 0.007 (0.001)
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Parameter Selection

▶ Cross-Validation using Robust Trimmed Loss
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Summary

▶ Even if the loss function is robust, neural networks may overfit to outliers.
▶ Proposed HOVR "stiffen" expressive models including neural networks.
▶ Proposed SGSD efficiently minimizes the ARTL, that combines the trimmed loss and

variation regularization.

My personal webpage: https://okuno.net
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