積分型の損失関数を利用する統計的パラメータ推定

奥野彰文1,2,3

¹統計数理研究所, ²総合研究大学院大学, ³理化学研究所 (AIP/CBS)

https://okuno.net/slides/2025-10-RIMS.pdf

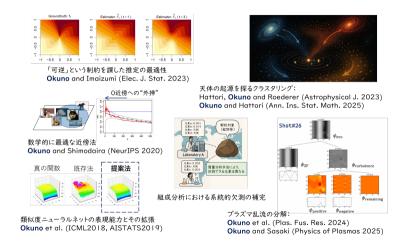
自己紹介+講演概要

& 奥野彰文 博士 (情報学, 京都大学)¹

- ▶ 専門:統計的機械学習,特に手法開発とその理論解析.
- ▶ 普段は統計数理研究所 (東京都立川市) にいます.

¹https://okuno.net

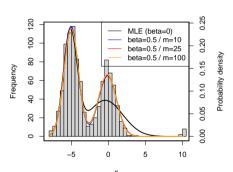
統計~機械学習の何でも屋です



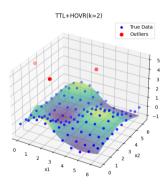
▶ 理論~応用まで、統計関係で何かありましたらお気軽にお声がけください。

今日の講演内容

▶ 有限和型 $L_n(\theta) = \frac{1}{n} \sum_{i=1}^n s(z_i; \theta)$ ではなく, 積分型 $L(\theta) = \int s(z; \theta) d\mathbb{P}(z)$ の損失を用いたパラメータ推定.



混合など複雑な分布のロバスト推定 (Okuno, AISM2024)



外れ値に強いニューラルネットの学習 (Okuno and Yagishita, arXiv:2308.02293)

- 1 自己紹介+講演概要
- ② 先に技術的結論から

• 課題:損失関数が積分型であるつらさ

• 解決策:確率的最適化

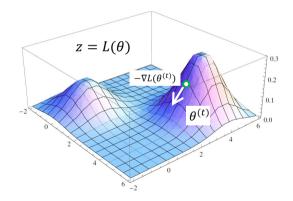
- ③ 応用1:複雑な分布のロバスト推定
 - 外れ値にロバストな分布推定とは
 - 確率的最適化による最適化
- ▲ 応用2:外れ値に強いニューラルネットの学習
 - 旧来のロバスト推定とその課題
 - ニューラルネットの変動正則化
 - 確率的最適化を利用したアルゴリズム
- ⑤ より最近の話

先に技術的結論から

損失関数 $L(\theta)$ 最小化により、パラメータ $\hat{\theta}$ を推定する.

勾配法:局所的最速で山を下る方法

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma \nabla_{\theta} L(\theta^{(t)}), \quad t = 1, 2, \dots$$



A. Okuno

損失関数が「積分型」だとつらい

積分型の損失関数 $L(\theta) = \int s(z; \theta) d\mathbb{P}(z)$ の勾配法:

$$heta_*^{(t+1)} \leftarrow heta_*^{(t)} - \gamma \,
abla_{ heta} \int s(z; heta_*^{(t)}) \mathrm{d}\mathbb{P}(z)$$

を数値積分で近似すると:

$$\theta_N^{(t+1)} \leftarrow \theta_N^{(t)} - \gamma \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} s(z_i; \theta_N^{(t)})$$

- ▶ d次元なら誤差 ε を達成するためにだいたい $N \sim \varepsilon^{-1/d}$.
- ightharpoonup 各ステップでO(N)回の計算が要る.最適化でT反復すると全体で $O(\varepsilon^{-1/d}T)^a$.

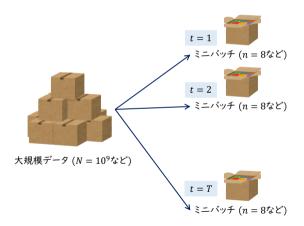
 $^{^{}a}\varepsilon \approx 0$, d > 1, $T \rightarrow \infty$, なので一般にはやりたくない計算

▶ なので、スパコンで数値積分をします・・・という話ではありません.

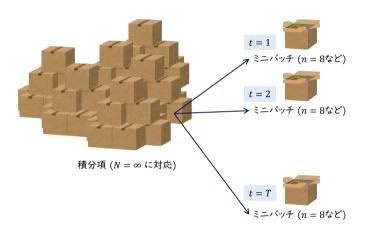
(これはこれでやりたくて、講演の最後に少し話をします)

深層学習などで多用される「確率的最適化」

▶ 学習データサイズNが大きすぎて,各反復にすべてのデータは使わない.



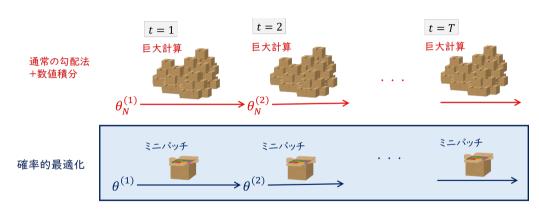
積分は $N = \infty$ と思えばよい.



☆ 各ステップで律儀に「無限」を考える必要がない².

²そもそも、どうやっても数値計算で無限は扱えない…

つまりどういうことなのか



各反復の計算は軽く,<u>反復全体で</u>実質的に巨大な数値積分を計算する =毎回大きな計算をする必要がない!!

という話の一般化が75年前

Robbins and Monro (1951)

 $\nabla_{\theta} L(\theta)$ の確率的な不偏勾配 $g(\theta)$, つまり

$$\mathbb{E}(g(\theta)) = \nabla_{\theta} L(\theta)$$

を使った確率的勾配法 $\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} g(\theta)$ は $t \to \infty$ で $L(\theta)$ を最小化する.

- ▶ 通常の勾配法と異なり、 $\gamma^{(t)} \setminus 0$ とすることが重要.
- ightharpoons m 個の乱数 $z_i^{(t)} \sim \mathbb{P}$ を生成して,以下の更新をするとパラメータが推定できる 3 :

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} s(z_j^{(t)}; \theta^{(t)}).$$

 $^{^3}m$ はそこそこ大きくても良いし,理論的には m=1 でもよい.全体計算量 $O(\varepsilon^{-1/d}T)$ が O(T) に.

ここまでのまとめ

積分型の損失関数 $L(\theta) = \int s(z;\theta) d\mathbb{P}(z)$ を最小化したければ,

♥ 数値積分による近似:

$$heta_N^{(t+1)} \leftarrow heta_N^{(t)} - \gamma \frac{1}{N} \sum_{j=1}^N \nabla_{\theta} s(z_j; \theta_N^{(t)}).$$

- 計算量 $O(\varepsilon^{-1/d}T)$, 誤差 $\to c_{\varepsilon} > 0$.
- 🖒 確率的な最適化 (Robbins and Monro, 1951):

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} s(z_j^{(t)}; \theta^{(t)}), \quad z_j^{(t)} \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}, \ \gamma^{(t)} \searrow 0.$$

計算量 O(mT) = O(T), 改 誤差 $\rightarrow * 0.$

複雑な分布のロバスト推定 (Okuno, AISM2024)

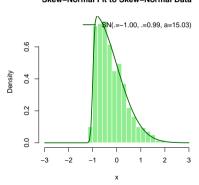
通常の分布推定

- ▶ 観測値 $x_1, x_2, ..., x_n$ が従う分布Qを知りたい.
- ▶ 負の対数尤度 $-\ell(\theta) = -\sum_{i=1}^n \log p_{\theta}(x_i)$ を最小化して $P_{\hat{\theta}} \approx Q$ が求まる.
- ☆ 積分が出てこない!

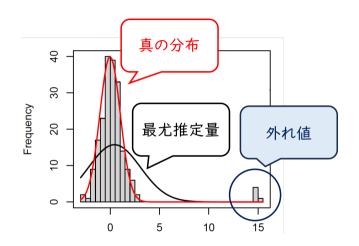
N(0,1) Data with Normal Fit

N(0.02, 0.99²)

Skew-Normal Fit to Skew-Normal Data



最尤推定は外れ値に弱い



▶ $x_n \to \infty$ で最尤推定は即座に破綻.

A. Okuno

外れ値にロバストな分布推定

幕密度ダイバージェンス (Density power divergence, DPD; Basu et al. 1998):

$$D_{\beta}(\hat{Q}, P_{\theta}) = \underbrace{-\frac{1}{\beta} \frac{1}{n} \sum_{i=1}^{n} p_{\theta}(x_{i})^{\beta} + \int \frac{1}{1+\beta} p_{\theta}(x)^{1+\beta} dx}_{=:L(\theta)} + \text{Const.}$$

を最小化するとよい.

積分が出てきてつらい. この流れで聞くと自明だが、ロバスト統計界隈で膠着状態になっていた.

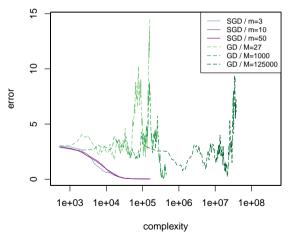
つらい積分の歴史と今回の研究

- ▶ 積分が解析的に計算できるのでそれを使う:
 - ▶ 正規分布 (Basu et al., 1998)
 - ▶ 指数分布 (Jones et al., 2001),
 - ▶ 一般化パレート分布 (Juárez and Schucany, 2004),
 - ▶ ワイブル分布 (Basu et al., 2016),
 - ▶ 一般化指数分布 (Hazra, 2022).
- ▶ 解析的に計算できないので数値近似:
 - ▶ 混合正規分布 (Fujisawa and Eguchi, 2006),
 - ▶ ポアソン分布 (Kawashima and Fujisawa, 2019),
 - ▶ 歪正規分布 (Nandy et al., 2022).
- ▶ 各反復でそもそも積分を計算せず、確率的最適化:
 - ▶ 任意の分布 (Okuno, 2024; 今回の研究).

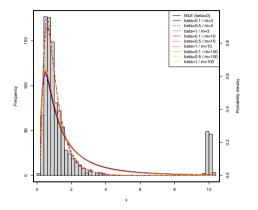
20 / 41

一例として、多変量正規分布 (d = 3次元) のパラメータ推定

- ▶ 確率的最適化(SGD)の計算量: t(n+m),
- ▶ 通常の勾配法(GD)+数値積分の計算量: t(n+M).

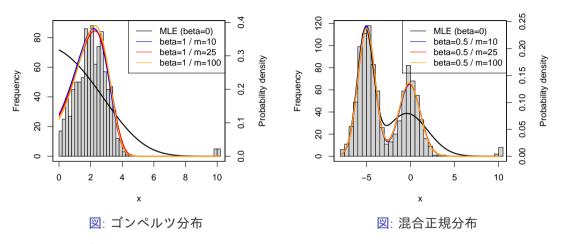


逆ガウス分布, $\xi = 0.1$.



$$p_{\theta}(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right)$$

(*逆ガウス分布の積分項は明示的に計算できない.)

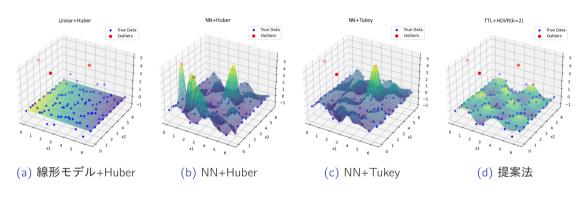


(*ゴンペルツ分布も混合正規分布も積分項が明示的に計算できない)

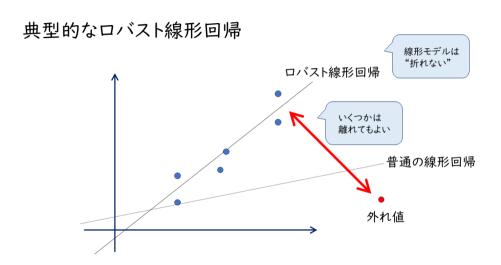
外れ値に強いニューラルネットの学習 (Okuno and Yagishita, arXiv:2308.02293, in revision)

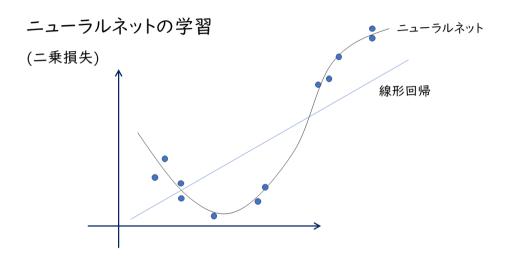
なにをしたのか

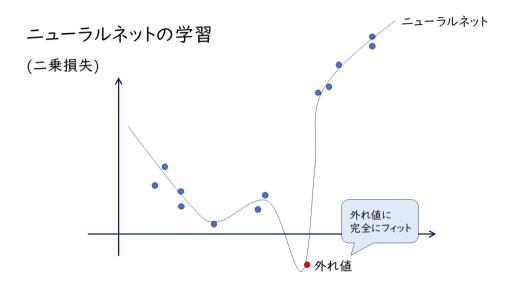
▶ 外れ値にロバストかつフレキシブルな予測法の提案.

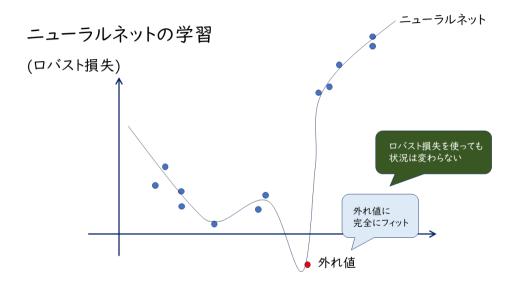


▶ 典型的方法「損失が大きなサンプルを捨てる」だけではうまくいかない。

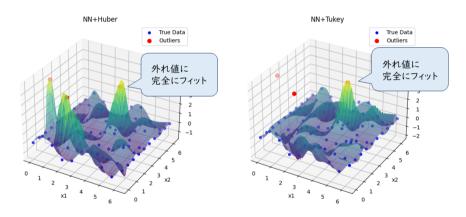


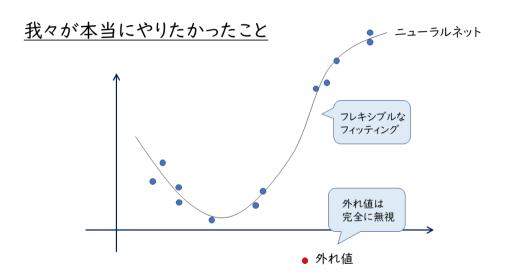






実際のロバスト損失+NN (+勾配法)





つまり何が言いたいのかというと

▶ 予測関数 $f_{\theta}(x)$ はいい感じにグニャグニャしてほしいが、 過剰にグニャグニャしないでほしい.

予測関数に"硬さ"のようなものを入れたい。

ニューラルネットの変動を抑える

積分型:Higher-Order Variation Regularization (HOVR; Okuno, arXiv:2308.02293v1)

$$C_{k,q}(f_{\theta}) := \int_{\Omega} \left| \frac{\partial^k f_{\theta}(x)}{\partial^k x} \right|^q dx.$$

例えば正規直交基底を用いた回帰関数 $f_{ heta}(x) = \sum_{i} \theta_{j} \phi_{j}(x)$ の場合には,

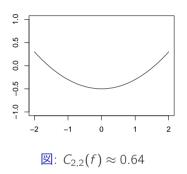
$$C_{k,2}(f_{\theta}) \sim \|\theta\|_2^2$$

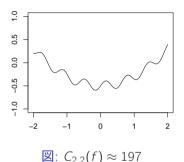
なので、パラメータ正則化の一般化と思える.

- ▶ 導関数は autograd で計算可能.
- ▶ 流行のPhysics-Informed Neural Network (PINN) の亜種と思える⁴.

⁴PINN では固定の Collocation Points を使うことが多い.

つまりどうこと?





- ▶ HOVRを入れるとニューラルネットの激しいグニャグニャを抑制できる.
- ▶ 線形/カーネル回帰モデルなどではパラメータ正則化に対応. $\|f\|_{\mathcal{H}}$ は昔から….

提案法 (Okuno and Yagishita, arXiv:2308.02293, in revision)

▶ 正則化により過剰なグニャグニャを防ぎ、ロバスト損失で外れ値を無視する.

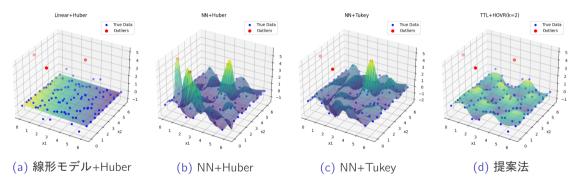
最小化する損失関数:
$$L(\theta) = \underbrace{\frac{1}{2} T_h(r(\theta))}_{\text{ロバスト損失}} + \underbrace{\lambda \cdot C_{k,q}(f_{\theta})}_{\text{関数を硬くする正則化}}$$

- ▶ 破局点の理論解析などができる(省略)
- $ightharpoonup C_{k,q}(f_{\theta})$ は積分形だが、効率的なアルゴリズム 5 が作れる (省略)

⁵Stochastic Gradient-Supergradient Descent (SGSD) は収束も証明できる.

というわけで最初の図に戻る.

- ▶ (入力)2次元 100 100 100 (出力)1次元の多層パーセプトロン.
- ▶ パラメータ数2万超,外れ値3%混入.



 \boxtimes : $f_*(x) = \sin(2x_1)\cos(2x_2)$.

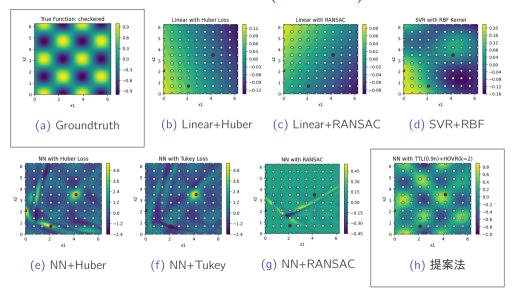
統計・機械学習に関する質問・依頼など、お気軽にご連絡ください。

okuno@ism.ac.jp

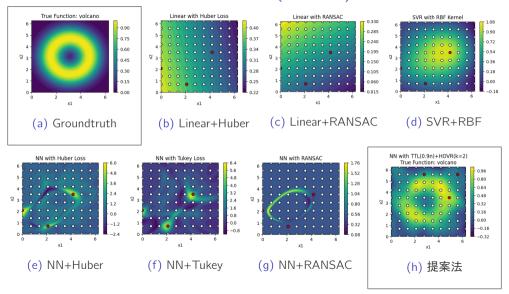
(今日の資料) https://okuno.net/slides/2025-10-RIMS.pdf

応用2の追加実験

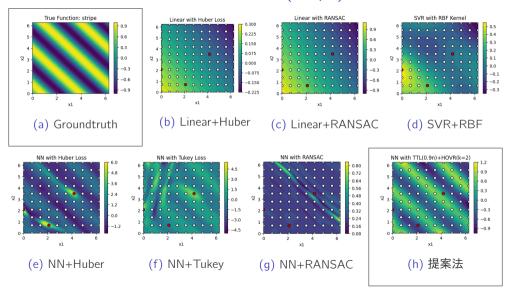
やってみた 1 (checkered)



やってみた 2 (volcano)



やってみた 3 (stripe)



やってみた 4 (plane)

