A Generalization Gap Estimation for Overparameterized Models via the Langevin Functional Variance (JCGS2023)

Akifumi Okuno^{1,2,3} Keisuke Yano^{1,2}

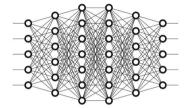
¹ISM ²SOKENDAI, ³RIKEN

Abstract

The functional variance used as the penalty term in WAIC can estimate the generalization error of singular models with fixed parameter size, but its applicability to over-parameterized models such as neural networks remains unclear. In this study, we consider over-parameterized linear regression as a linearized setting and show that the functional variance becomes an asymptotically unbiased estimator of the generalization error. We also propose a method for estimating the functional variance using Langevin dynamics.

Overparameterized model g_{θ} (e.g., deep neural network):

$$y_i \approx g_{\theta}(\mathbf{z}_i), \quad \mathbf{z}_i \in \mathbb{R}^q, \quad (i = 1, 2, ..., n).$$



Its linear approximation (called overparameterized linear regression; Bartlett et al., 2020)

$$y_i \approx \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle, \quad \mathbf{x}_i, \boldsymbol{\beta} \in \mathbb{R}^p, \quad (i = 1, 2, ..., n)$$

satisfies $p \approx$ "#parameters in g_{θ} ". Namely, $n \leq p$.

(Gibbs) Generalization Gap

$$\Delta(\alpha) = \underbrace{\mathbb{E}_{\mathbf{y}^*,\mathbf{y}}\left(\mathbb{E}_{\boldsymbol{\beta}\sim \mathsf{Pos}(\alpha)}[\|\mathbf{y}^* - \mathbf{X}\boldsymbol{\beta}\|_2^2]\right)}_{\mathsf{for \ test}} - \underbrace{\mathbb{E}_{\mathbf{y}}\left(\mathbb{E}_{\boldsymbol{\beta}\sim \mathsf{Pos}(\alpha)}[\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2]\right)}_{\mathsf{for \ training}}$$

with a ridge-estimator $\hat{\boldsymbol{\beta}}_{\alpha} = (\mathbf{X}^{\top}\mathbf{X}/n + \alpha)^{-1}\mathbf{X}^{\top}\mathbf{y}/n$ and a quasi-posterior

$$Pos(\alpha) = N(\hat{\boldsymbol{\beta}}_{\alpha}, \mathbf{Q}_{\alpha}).$$

- Cross-validation:
 - requires retraining (=computationally intensive)
- ► Information Criterion:
 - square cannot be applied to singular models (e.g., DNN)
 - ∇ requires $p \times p$ information matrix (=computationally intensive)

Functional Variance

$$FV(\alpha) = \sum_{i=1}^{n} \mathbb{V}_{\boldsymbol{\beta} \sim \mathsf{Pos}(\boldsymbol{\alpha})}[\log f(y_i \mid \mathbf{x}_i, \boldsymbol{\beta})]$$

is a penalty term in WAIC (Watanabe, 2010, 2018).

 \triangleright $|\mathbb{E}_{\mathbf{v}}[\mathsf{FV}(\alpha)] - \Delta(\alpha)| \to^p 0$ even for singular models (with *p*:fixed, $n \to \infty$).

Two problems:

- ∇ (Theory) p in overparameterized models is not fixed $(p \ge n)$.
- (Computation) Posterior computation for NN is difficult.

★ Our Contribution 1 (Theory)

Main Theorem (Informal)

Let $p \ge n$. Under the following conditions

(i)
$$\max_{\mathbf{u},i} \mathbb{P}(\mathbf{u} := i\text{-th left singular vector of } \mathbf{X}_n) = o(n/\text{vol}(\mathbb{S}^{n-1})),$$

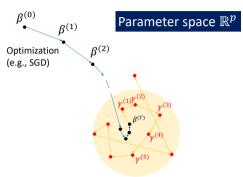
(ii)
$$\mathbb{P}\bigg(\underbrace{\frac{1}{n}\sum_{i=1}^n\sigma_i(\mathbf{X}_n)^2}_{\approx n^{-1}\sum_{i=1}^n\lambda_i(\mathsf{Fisher}(g_\theta))} < s_*\bigg) \to 1 \ (n \to \infty), \text{ and}$$

(iii)
$$\|\boldsymbol{\beta}_0\|_{\infty} \leq p^{-1/2}b$$
,

it holds that $|\mathbb{E}_{\mathbf{y}}[\mathsf{FV}(\alpha)] - \Delta(\alpha)| \to^p 0 \quad (n \to \infty).$

- Gaussian $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \overset{\text{i.i.d.}}{\sim} N_p(\boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n)$ (tr $\boldsymbol{\Sigma}_n \leq \lambda_*$) (see, e.g., Eaton (1989))
- \bigcirc Deep/Shallow NN g_{θ} (see, e.g., Karakida et al. (2019))

Langevin Gradient Descent



Posterior ≈ Langevin Distribution

$$\mathbf{\gamma}^{(t+1)} = \underbrace{\mathbf{\gamma}^{(t)} - \frac{1}{4} \delta \frac{n}{\sigma_0^2} \frac{\ell_{\alpha}(\mathbf{\gamma}^{(t)})}{\partial \mathbf{\gamma}}}_{\text{Gradient Descent}} + \underbrace{\delta^{1/2} \mathbf{e}^{(t)}}_{\text{Normal Noise}}, \quad \mathbf{e}^{(t)} \sim N_p(\mathbf{0}, \mathbf{I}_p)$$

★ Our Contribution 2 (Computation)

cf. Existing FV:
$$FV(\alpha) = \sum_{i=1}^{n} \hat{\mathbb{V}}_{\boldsymbol{\beta} \sim Pos(\alpha)}[\log f(y_i \mid \mathbf{x}_i, \boldsymbol{\beta})].$$

Langevin FV:
$$LFV(\alpha) = \sum_{i=1}^{n} \hat{\mathbb{V}}_{\gamma \sim Langevin(\alpha)}[\log f(y_i \mid \mathbf{x}_i, \mathbf{\gamma})].$$

- Simply computed with GD-based packages/wrappers (e.g., PyTorch)
- \bigcirc Does not compute $p \times p$ Information matrix (unlike TIC/RIC/GIC...)

Numerical Experiments 1: Linear

Synthetic Data Generation:

- ightharpoonup p = 2n, with n = 100, 200, 300, 400.
- $\mathbf{V} \in \mathbb{R}^{n \times n}, \mathbf{V} \in \mathbb{R}^{n \times p}$ are uniformly sampled from orthogonal matrices
- ▶ $\beta_0 \sim N(\mathbf{0}, p^{-1} \mathbf{I}_p)$,
- with given singular values $\mathbf{s} = \text{diag}(s_1, s_2, \dots, s_n)$,

$$\mathbf{X} = \mathbf{USV}^{\top}$$
 and $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}_0, \mathbf{I}_n)$.

LFV Setting:

 $\delta = 1/(10n)$, T = 15n.

Numerical Experiments 1-1: Linear $(s_i = 1(i \le 10))$

Table: p/n = 2, $\alpha = 0.1 \delta = 0.1/n$, $\sharp Posterior = \sharp Langevin = 15n$, $\sharp Monte Carlo = 50$

n	100	200	300
$\Delta(\alpha)$	9.091	9.091	9.091
$TIC(\kappa=0)$	8.770 ± 1.412	9.473 ± 1.035	9.466 ± 0.885
$TIC(\kappa=0.1)$	8.770 ± 1.412	9.473 ± 1.035	9.466 ± 0.885
$FV(\alpha)$	8.458 ± 1.286	8.845 ± 0.941	8.789 ± 0.802
$LFV(\alpha)$	8.477 ± 1.368	8.966 ± 0.994	8.917 ± 0.792

^{*}TIC with generalized inverse of information matrix (Thomas et al., 2020)

Numerical Experiments 1-2: Linear $(s_i = i^{-1})$

Table: p/n = 2, $\alpha = 0.1 \delta = 0.1/n$, $\sharp Posterior = \sharp Langevin = 15n$, $\sharp Monte Carlo = 50$

п	100	200	300
$\Delta(\alpha)$	4.368	4.417	4.434
$TIC(\kappa=0)$	92.92 ± 11.81	190.8 ± 16.99	289.8 ± 31.01
$TIC(\kappa=0.1)$	91.97 ± 11.71	134.3 ± 11.87	167.1 ± 17.84
$FV(\alpha)$	4.127 ± 0.611	4.18 ± 0.341	4.315 ± 0.508
LFV(lpha)	3.498 ± 0.713	3.926 ± 0.457	4.1 ± 0.522

^{*}TIC with generalized inverse of information matrix (Thomas et al., 2020)

Numerical Experiments 2: Nonlinear NN

NN Architecture:

- $\mathbf{p}_{\theta}(\mathbf{z}) = \langle \theta^{(2)}, \tanh(\theta^{(1)}\mathbf{z} + \theta^{(0)}) \rangle$ with M = 50, 100, 150 hidden units.
- $ightharpoonup p := |\theta| = M(d+2).$
- $\blacktriangleright \mu = g_{\theta_0}$ for some θ_0 .
- ▶ NN is initialized by $\theta \sim N(\theta_0, 0.01 \mathbf{I}_p)$.

Langevin FV Setting

▶ $T \in \{250, 1000\}$, and $\delta = 10^{-5}$. We use the last 0.9T iterations to compute LFV.

Generalization Gap

$$\tilde{\Delta} := \mathbb{E}_{\mathbf{y}^*} \left(\frac{1}{n} \sum_{i=1}^n \{ y_i^* - g_{\hat{\theta}}(\mathbf{z}_i) \}^2 \right) - \frac{1}{n} \sum_{i=1}^n \{ y_i - g_{\hat{\theta}}(\mathbf{z}_i) \}^2$$

is computed over 50 times experiments.

Numerical Experiments 2: Nonlinear NN

Table: The generalization gap and LFV for the neural network model with n = 1000 and T = 1000. LFV values for the overparameterized regime (i.e., p = M(d + 2) > n) are gray-colored.

	M = 50		M = 100		M = 150	
	LFV	$\tilde{\Delta}$	LFV	$\tilde{\Delta}$	LFV	$\tilde{\Delta}$
d = 5	6.43 ± 0.96	4.26	6.49 ± 0.52	4.41	7.30 ± 0.80	4.60
d = 10	11.03 ± 1.28	8.75	12.91 ± 1.54	9.18	13.56 ± 1.14	9.64
d = 15	16.78 ± 1.39	17.64	18.93 ± 1.57	18.60	20.13 ± 2.07	19.46

Summary

- (1) We proved that $|\mathbb{E}_{\mathbf{y}}[\mathsf{FV}(\alpha)] \Delta(\alpha)| \to^p 0$, for $p \ge n$.
- (2) We proposed a Langevin FV, which is
 - ▶ simply computed with GD-based packages (e.g., PyTorch),
 - ▶ no needed to compute $p \times p$ information matrix (unlike TIC).
- (3) We demonstrated Langevin FV in numerical experiments.

Contact Info: A. Okuno (okuno@ism.ac.jp)

- ► Another poster of ours (@IASC-ARS): "Algebraic Approach to Ridge-Regularized Mean Squared Error Minimization in Minimal ReLU Neural Network"
 - ▶ We enumerated all the local solutions for minimal ReLU NN (using symbolic computation).

References I

- Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. (2020). Benign overfitting in linear regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070.
- Cheng, X., Chatterji, N. S., Abbasi-Yadkori, Y., Bartlett, P. L., and Jordan, M. I. (2018). Sharp convergence rates for langevin dynamics in the nonconvex setting. *arXiv preprint* arXiv:1805.01648.
- Eaton, M. L. (1989). Group invariance applications in statistics. In *Regional conference* series in *Probability and Statistics*, pages i–133. JSTOR.
- Karakida, R., Akaho, S., and Amari, S.-i. (2019). Universal statistics of fisher information in deep neural networks: Mean field approach. In Chaudhuri, K. and Sugiyama, M., editors, *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pages 1032–1041. PMLR.

References II

- Thomas, V., Pedregosa, F., Merriënboer, B., Manzagol, P.-A., Bengio, Y., and Le Roux, N. (2020). On the interplay between noise and curvature and its effect on optimization and generalization. In *International Conference on Artificial Intelligence and Statistics*, pages 3503–3513. PMLR.
- Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. *Journal of Machine Learning Research*, 11(116):3571–3594.
- Watanabe, S. (2018). Mathematical theory of Bayesian statistics. CRC Press.