Algebraic Approach to Ridge-Regularized Mean Squared Error Minimization in Minimal ReLU Neural Network (Joint work with R. Fukasaku and Y. Kabata; arXiv:2508.17783)

Akifumi Okuno^{1,2,3}

¹Inst. Stat. Math., ²SOKENDAI, ³RIKEN (AIP/CBS)

https://okuno.net/slides/2025-12-OCAMI.pdf

Today's Overview

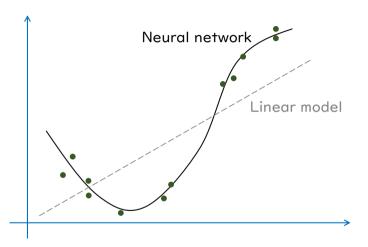
▶ Neural networks with the activation function $ReLU(z) = max\{0, z\}$:

$$\mathbb{R}^d \ni x \mapsto \llbracket a, \text{ReLU}(Bx + c) \rrbracket + m \in \mathbb{R},$$

are highly non-convex and difficult to optimize.

Nevertheless, all local solutions can be enumerated using computational algebra (Fukasaku, Kabata, and Okuno; arXiv:2508.17783)

Foundations and Challenges of Neural Networks



Neural networks are flexible nonlinear predictive models.

A. Okuno

Definition of Neural Networks

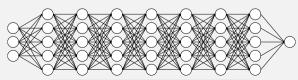
► Linear regression model:

$$f_{\theta}^{\mathsf{LM}}(x) = Wx + b$$

▶ **Neural network** (whose special case is the perceptron):

$$f_{\theta}^{\mathsf{NN}}(x) = W^{(Q+1)}\sigma\left(W^{(Q)}\sigma\left(\cdots\sigma\left(W^{(1)}x + b^{(1)}\right)\cdots\right) + b^{(Q)}\right) + b^{(Q+1)}.$$

- $ightharpoonup \sigma$ is the activation function, applied elementwise (e.g., $1/(1 + \exp(-z))$) or $\operatorname{ReLU}(z) = \max\{0, z\}$).
- ► Many other architectures exist beyond this form.
- ▶ When the number of layers Q is large, we refer to it as a deep neural network.



Neural Networks as Universal Approximators

- Let f be continuous on $I_n = [0, 1]^n$. Then with one hidden layer (Q = 1) and sufficiently many units, there exists a neural network f^{NN} that approximates f arbitrarily well.¹
 - Classical results: Cybenko (1989), Funahashi (1989).
- ightharpoonup Increasing the depth Q yields exponential gains in expressive power (Telgarsky, 2016),
- ▶ Increasing Q enables highly efficient approximation rates (Yarotsky, 2017),
- ▶ As $Q \to \infty$, universal approximation holds even with fixed width (Hanin, 2017).

¹With sigmoid activation $\sigma(z) = 1/(1 + \exp(-z))$, the approximation error can be uniformly controlled.

Implementation Is Extremely Easy (If You Just Use Them)

```
# NN Definition
   def init (self, input dim=2, activation func='sigmoid'):
       self.first = nn.Linear(input_dim, 100)
       self.hidden2 = nn.Linear(100, 100)
       self.activation = nn.Sigmoid() if activation func == 'sigmoid' else nn.ReLU()
       x = self.activation(self.bidden1(x))
       x = self.activation(self.hidden2(x))
       x = self.activation(self.hidden3(x))
```

Once the structure is specified, modern libraries handle the training automatically.

A Wide Variety of Applications

Image Recognition

Speech Recognition

Natural Language Processing

Reinforcennent Learning

Al for Science

Anomaly Detection

Recommendation Systems

Autonomous Driving

Generative Models

Medical Diagnosis

Finance / Forecasting

Robotics/ Control

 $({\sf Generated}\ {\sf by}\ {\sf ChatGPT})$

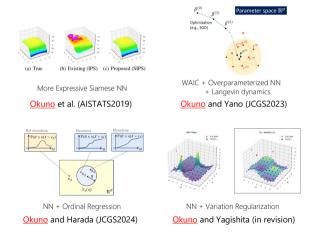
Buy a GPU, Problem Solved!

Thank you very much!

This makes everyone happy.

...But Reality Is Not That Simple

From the viewpoint of statistical science, many essential issues remain unresolved.

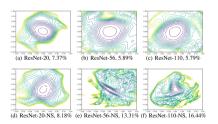


Despite substantial progress, the theoretical picture remains unclear.

Core Difficulties

- Nonlinearity.
- Redundant parametrization.
 - ▶ Overparameterization lead to degeneracy of the Fisher information
 ⇒ many classical statistical theories break down.
 - Optimization becomes non-convex; heuristics dominate in practice.

Typical training loss:
$$L(\theta) = \min_{\theta} \sum_{i=1}^{n} \{y_i - f_{\theta}(x_i)\}^2$$
.

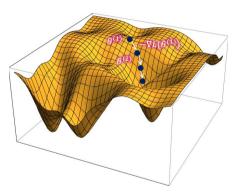


Reproduced from Li et al. (NeurIPS 2018), Fig. 5

The Loss Landscape Is Extremely Bumpy

Gradient descent update:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma \nabla L(\theta^{(t)}).$$

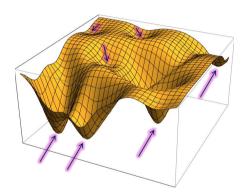


- ► For concave (single-valley) functions, many theoretical guarantees exist.
- ▶ For multimodal loss, the convergence limit depends on which basin the optimizer falls.
- Solutions may be non-isolated ⇒ further problems for statistical theory.

Goals and Starting Points

What We Ultimately Want to Do

We want to enumerate all local minima of the loss function.



- ▶ Local minima may not be isolated; they can form higher-dimensional solution sets.
- ► Can computational algebra determine *all* equations that such solutions satisfy?

Ideas Leading to Our Approach

Let us take another look at the structure of a (single-output) neural network:

$$f_{\theta}^{\text{NN}}(x) = W^{(Q+1)}\sigma\left(W^{(Q)}\sigma\left(\cdots\sigma\left(W^{(1)}x + b^{(1)}\right)\cdots\right) + b^{(Q)}\right) + b^{(Q+1)}.$$

ightharpoonup Often in theory, the activation $\sigma(z)$ is replaced by the identity function.

$$f_{\theta}^{\text{LNN}}(x) = W^{(Q+1)} \left\{ W^{(Q)} \left\{ \cdots \left(W^{(1)} x + b^{(1)} \right) \cdots \right\} + b^{(Q)} \right\} + b^{(Q+1)}$$
$$= \widetilde{W}^{(Q+1)} \widetilde{W}^{(Q)} \cdots \widetilde{W}^{(1)} x + \widetilde{b},$$

- ▶ The model reduces to linear regression with certain parameter constraints.
- ► Also known as linear neural networks or reduced-rank regression. (Aoyagi and Watanabe, 2005; Mehta et al., 2022; Aoyagi, 2024)

Activation Patterns of ReLU

The ReLU activation $\sigma(z) = \max\{0, z\}$ can be expressed via activation patterns.

For fixed
$$W \in \mathbb{R}^{m \times d}$$
, $b \in \mathbb{R}^m$, and $x \in \mathbb{R}^d$, there exists $e = e(W, b, x) \in \{0, 1\}^m$ such that $\operatorname{ReLU}(Wx + b) = \operatorname{diag}(e)(Wx + b)$,

where diag(e) is the diagonal matrix with diagonal entries e.

Example: If Wx + b = (3, -2, 2, 1, -1), then e = (1, 0, 1, 1, 0) and

$$ReLU(Wx + b) = (3, 0, 2, 1, 0) = diag(e)(Wx + b).$$

► Arora et al. (2018), Pilanci and Ergen (2020), Mishkin et al. (2022), etc.

Generalization to Multi-layer Networks

For parameters $\theta = (W^{(\ell)}, b^{(\ell)})_{\ell=1}^L$ and fixed input $x \in \mathbb{R}^d$, each layer $\ell = 1, \ldots, L$ has an activation pattern $e^{(\ell)} = e^{(\ell)}(\theta, x) \in \{0, 1\}^{m_\ell}$ such that

$$f_{\theta,E}^{NN}(x) = W^{(Q+1)} \operatorname{diag}(e^{(Q)}) \Big\{ W^{(Q)} \operatorname{diag}(e^{(Q-1)}) \{ \cdots \\ \cdots \operatorname{diag}(e^{(1)}) (W^{(1)}x + b^{(1)}) \cdots \} + b^{(Q)} \Big\} + b^{(Q+1)}.$$

- ▶ If $E = (e^{(\ell)})$ is fixed, the ReLU network reduces to a sequence of matrix products.
- ► The loss

$$\ell_{\lambda,E}(\theta) = \sum_{i=1}^{n} \{y_i - f_{\theta,E}^{NN}(x_i)\}^2 + \lambda \|\theta\|_2^2$$

becomes a polynomial in the parameters.

Our Basic Idea

- ▶ The loss $\ell_{\lambda,E}(\theta)$ is a polynomial in θ .
- ▶ Its minimizer should satisfy the estimating equation:

$$\frac{\partial \ell_{\lambda,E}(\theta)}{\partial \theta} = 0$$
,

which is also a polynomial system.

▶ This is precisely the type of problem addressed by computational algebra.

Our Work (Fukasaku, Kabata, and Okuno; arXiv:2508.17783)

So in Principle...

$$\frac{\partial \ell_{\lambda}(\theta)}{\partial \theta} = \frac{\partial \left\{ \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 + \lambda \|\theta\|_2^2 \right\}}{\partial \theta} = 0$$

If (Dr. Fukasaku) could simply solve this equation, everything would be resolved...

But reality is not that kind.²

²Things are not so easy in practice.

The Main Difficulties

- ▶ The activation pattern $E = (e^{(\ell)})$ depends on both the parameters θ and the inputs x.
 - ▶ (Ideal world) Fix the activation pattern first, then solve for the optimal parameters.
 - ▶ (Reality) Once parameters are chosen, the activation pattern is determined.
 - ► So the dependency is reversed.
- ▶ Moreover, the dependence on the inputs themselves is a major obstacle.
 - ▶ The model effectively changes depending on the data inputs, making it difficult to analyze.

A Very "Forceful" Idea

Why not simply consider *all* activation patterns?

- ▶ Assume each possible activation pattern and solve the estimating equations.
- ▶ Among the solutions, keep only those whose parameters satisfy the assumed pattern.
- Repeat for all activation patterns, and finally merge the obtained solutions.

Thus, we solve the estimating equations (via computational algebra) for each possible activation pattern.^a

^aEasy to say, hard to execute.

Detailed Setup and Simplifying Assumptions

▶ For simplicity, restrict attention to a network with Q = 1 hidden layer:³

$$f_{\theta}^{\text{NN}}(x) = [a, \text{ReLU}(Bx + c)], \quad \theta = (a, B, c),$$

where the number of units is L ($a, c \in \mathbb{R}^L$, $B \in \mathbb{R}^{L \times d}$).

▶ Eliminate a in advance. Define $\psi = (B, c)$ and consider

$$\ell_{\lambda}(\psi) = \min_{a} \left\{ \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 + \lambda \|\theta\|_2^2 \right\}.$$

▶ The minimizer in a is given analytically (ridge regression), so $\ell_{\lambda}(\psi)$ becomes a rational function. We therefore minimize $\ell_{\lambda}(\psi)$ algebraically.

³The essential ideas extend to general depth.

Activation Patterns and Partitioning of Parameter Space

- ► Consider a dataset $\{(x_i, y_i)\}_{i=1}^n$.
- ightharpoonup Define $\xi_{i\ell}(\psi) = \llbracket b_\ell , x_i \rrbracket + c_\ell$ and

$$e_{i\ell}=e_{i\ell}(\psi)=egin{cases} 1 & ext{if } \xi_{i\ell}(\psi)\geq 0, \ -1 & ext{if } \xi_{i\ell}(\psi)<0. \end{cases}$$

(We now use ± 1 instead of $\{0, 1\}$ for convenience.)

► Then

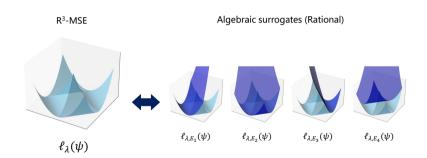
$$\operatorname{ReLU}(\xi_{i\ell}(\psi)) = \frac{e_{i\ell} + 1}{2} \, \xi_{i\ell}(\psi).$$

▶ Define the region of parameters yielding activation pattern *E*:

$$\Psi(E) = \{ \psi \in \Psi \mid \xi_{i\ell}(\psi) e_{i\ell} \ge 0, \ \forall i, \ell \}.$$

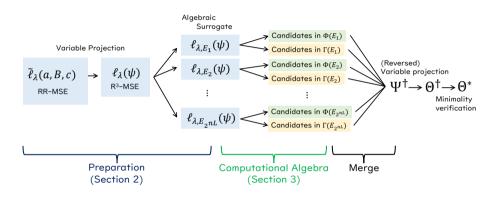
Function Decomposition and Surrogate Losses

- ightharpoonup Our true objective is to minimize $\ell_{\lambda}(\psi)$.
- Partition parameter space into $\Psi(E_1)$, $\Psi(E_2)$, ... based on activation patterns. In each region, $\ell_{\lambda}(\psi)$ equals a surrogate $\ell_{\lambda,E}(\psi)$ consistent with pattern E.



► The solutions (especially, interior points of each region) of $\frac{\partial \ell_{\lambda,E}(\psi)}{\partial \psi} = 0$ can be obtained by computational algebra.

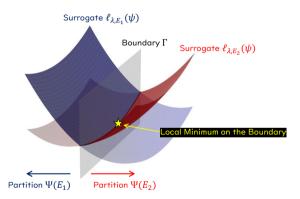
Overall Procedure



- ▶ Enumerating interior local minimizers (candidates) is relatively straightforward.
- ▶ Boundary solutions, however, are much more subtle.

Why Boundary Solutions Are Difficult

▶ For neighboring activation patterns E_1 , $E_2 \in \{-1, +1\}^{n \times L}$, the surrogate losses ℓ_{λ, E_1} and ℓ_{λ, E_2} may each have minimizers on the shared boundary.



 \triangleright Across the full space Ψ , neither surrogate may produce local minima. Yet *on the boundary*, switching between the surrogates can create new local minima.

Local Minima on the Boundary

- A point ψ lies on a boundary if $\xi_{i\ell}(\psi) = [\![b_\ell, x_i]\!] + c_\ell = 0$ for some (i, ℓ) .
- ► Solve the Lagrange multiplier system:

$$\frac{\partial}{\partial \psi} \{\ell_{\lambda,E}(\psi) + \beta \, \xi_{i\ell}(\psi)\} = 0$$

which is a system of rational equations.

FKO (arXiv:2508.17783) Theorem 2

Any local minimum of ℓ_{λ} is either

- (1) an interior local minimizer of some region $\Psi(E)$, or
- (2) a local minimizer on a boundary between regions.
 - ▶ Hence all local minima arise as solutions of polynomial (or rational) equations.

Algebraic Varieties

For polynomials $f_1, \ldots, f_r \in \mathbb{R}[\psi]$, define

$$V(f_1, ..., f_r) = \{ \psi \in \Psi \mid f_1(\psi) = \cdots = f_r(\psi) = 0 \}.$$

Computing a Gröbner basis yields an explicit description of the variety.

In Our Setting

Interior solutions (where $\prod_{i,\ell} \xi_{i\ell}(\psi) \neq 0$) satisfy

$$\mathcal{S}_{\mathcal{E}} = \mathbb{V}\left(\operatorname{num}\left(rac{\partial \ell_{\lambda,\mathcal{E}}(\psi)}{\partial \psi}
ight)
ight) ackslash \mathbb{V}\left(\operatorname{den}\left(rac{\partial \ell_{\lambda,\mathcal{E}}(\psi)}{\partial \psi}
ight) \prod_{i,\ell} \xi_{i\ell}(\psi)
ight).$$

▶ Boundary minimizers correspond to similar algebraic varieties.

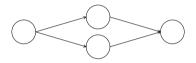
Doing This for All Activation Patterns

- ▶ There are at most 2^{nL} activation patterns. For each pattern, we compute the corresponding algebraic varieties.
- ► Each solution is a candidate stationary point.⁴
- ▶ We test local minimality and collect all true local minima.

⁴Not necessarily a minimizer, but all local minima are included among them.

A Concrete Example

▶ Input dimension d = 1, number of units L = 2, sample size n = 5.

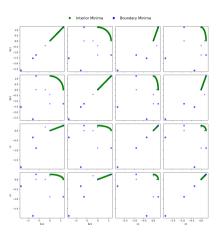


$$(x_1, y_1) = (-0.17, 0.05),$$
 $(x_2, y_2) = (0.44, 1.02),$ $(x_3, y_3) = (-1.00, 0.61),$ $(x_4, y_4) = (-0.40, -0.36),$ $(x_5, y_5) = (-0.71, -1.32).$

▶ The number of possible activation patterns is $2^{nL} = 1024.5$

⁵So we must compute 1024 Gröbner bases!

Computation Results

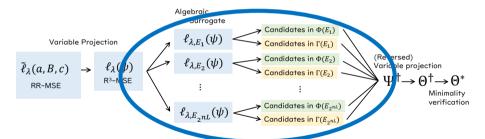


- ▶ Despite ridge regularization, an entire 1-dimensional solution set appears.
- All isolated points turned out to lie on boundaries.

Towards the Future

Remaining Challenges

- ▶ The computational cost is extremely large.
 - Increasing the number of parameters ⇒ both per-pattern computation and parallel load increase.
 - ightharpoonup Increasing the sample size \Rightarrow the number of activation patterns increases exponentially.



► Future work includes parallelization and fast computation of Gröbner bases for the associated polynomial systems.

Please feel free to contact me.

okuno@ism.ac.jp

Slides available at: https://okuno.net/slides/2025-12-OCAMI.pdf