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What is Computational Algebra?

> fi,...,f € R[] are real polynomials (e.g., f1(¢) = Y343 + 2ho — 1).
Roughly speaking, computational algebra can solve simultaneous polynomial equation®:

fi(Y) =0, K(Y)=0 -, f(¥)=0.

FL{pd , 92 ] 1= yd* - 2 y2°;
f2lpd , 92 ] 1= y1* + 3 y2;

Solve[{fl[yl, y2] =@, f2[y1, y2] =@}, {¥1, ¥2}]

3 3 3 3
El 3 - T = . 3 7’ T
{{zﬂl%@ 2 >0} {Ufl% W2 > } {Lﬁle W2 > }}

7z A

Figure: A popular example: Mathematica

It provides a simpler form of the affine variety V(fi, ..., fy={Yev|al) = ="7f()=0}
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In This Study... Overview

» Using computational algebra, we enumerate all the local minima of the RelLU neural
network loss functions.
(Fukasaku, Kabata, and Okuno; arXiv:2508.17783)
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Foundations and Challenges of Neural Networks
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Neural network

Neural networks are flexible nonlinear predictive models.
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Definition of Neural Networks

» Linear regression model:
f(x) = Wx + b

» Neural network (whose special case is the perceptron):
FNN(x) = W@ty (Wm)a ( o (W(l)x + b(1>) , ) i b(o)) 1 p(Q+1),

» o is the activation function, applied elementwise (e.g., 1/(1 + exp(—2z)) or
ReLU(z) = max{0, z}).

» Many other architectures exist beyond this form.

» When the number of layers Q is large, we refer to it as a deep neural network.

» NN has wuniversal approximation capability.
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A Wide Variety of Applications
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» From the viewpoint of statistical science, many essential issues remain unresolved.

Despite substantial progress, the theoretical picture remains unclear.

A. Okuno

...But Reality Is Not That Simple
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Core Difficulties: The Loss Landscape Is Extremely Bumpy
» Gradient descent update:

o+ o) — VL (6W).

» For concave (single-valley) functions, many theoretical guarantees exist.
» For multimodal loss, the convergence limit depends on initial parameter.
> We can't know: how many solutions? are they isolated?
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Goals and Starting Points
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What We Ultimately Want to Do

We want to enumerate all local minima of the loss function.

» How many solutions?
» Are they isolated? or form high-dimensional solution sets?
» We leverage computational algebra to list all the solutions!
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Algebraic Representation of RelLU Activation

The ReLU activation o(z) = max{0, z} can be expressed via activation patterns.

For fixed W € R™*9 b€ R™, and x € RY, there exists e = e(W, b, x) € {0, 1} such that
ReLU(Wx + b) = diag(e)(Wx + b),

where diag(e) is the diagonal matrix with diagonal entries e.

» Example: If Wx+b=(3,-2,2,1,-1), then e=(1,0,1,1,0) and
ReLU(Wx + b) = (3,0, 2,1,0) = diag(e)(Wx + b).

» Arora et al. (2018), Pilanci and Ergen (2020), Mishkin et al. (2022), etc.
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Generalization to Multi-layer Networks

For parameters 8 = (W), b®))L_, and fixed input x € R9, each layer £=1, ..., L has an
activation pattern e(®) = e(®) (g, x) € {0, 1}™ such that

fN(x) = W(QH)diag(e(Q)){ W(@diag(el@=){. ..

- diag(eM)(WDx 4 pMy... 3 + b(o)} 4 p(@+1).

> If £ = (el®) is fixed, the ReLU network reduces to matrix product.
> The loss

6 e(0 Z{yl — b ()} + X613

becomes a polynomial in the parameters.
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Our Basic Idea

» The loss £y £(0) is a polynomial in 6.
» [ts minimizer should satisfy the estimating equation:

04x.£(0)

o5 O

which is also a polynomial system.
» This is precisely the type of problem addressed by computational algebra.
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Our Work (Fukasaku, Kabata, and Okuno; arXiv:2508.17783)

A. Okuno Algebraic Approach to Optimize ReLU NN 15/28



So in Principle...

0l e(6)  O{> I (vi— foe(x))?+AOI2} 0
06 o 06 o

If we could simply solve this equation, everything would be resolved:--

But, things are not so easy in practice...
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Difficulties

00,5(0) _

ag o~ —~ o~
E > 0,,0,,,0,

Activation pattern Solution candidates

Problem:
Solutions does not necessarily correspond to the activation pattern E
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Our strategy

001, (0) _
0 ~
l;l —> 691;1’2
01,(0)
0 ~
£ > bra — solutons
035,(0)
0 ~ A
E3 —> 0E3,2 9E3,n3
Filter out candidates -
that does not satisfy the activation pattern
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Why Boundary Solutions Are Difficult

» For neighboring activation patterns £y, B> € {—1, +1}"*L, the surrogate losses £ g,
and £y g, may each have minimizers on the shared boundary.

Surrogate 4’/1.51 @)

Boundary T Surrogate 4’/1,52 @)

Local Minimum on the Boundan

Partition W(E;) Partition W(E,)

» Across the full space W, neither surrogate may produce local minima. Yet on the
boundary, switching between the surrogates can create new local minima.
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Local Minima on the Boundary

» A point 7 lies on a boundary if £(¢¥) = [ bs, x;] + c¢ = 0 for some (i, £).
> Solve the Lagrange multiplier system:

0
%{KA,E(UJ) +B&ie(¥)} =0
which is a system of rational equations.

FKO (arXiv:2508.17783) Theorem 2
Any local minimum of £ is either
(1) an interior local minimizer of some region W(E), or

(2) a local minimizer on a boundary between regions.

» Hence all local minima arise as solutions of polynomial (or rational) equations.
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A Concrete Example

» Input dimension d = 1, number of units L = 2, sample size n = 5.

(x1,y1) = (=0.17, 0.05),  (x2,y,) = (0.44, 1.02), (x3,y3) = (—1.00, 0.61),
(X4, va) = (—0.40, —0.36), (xs,ys) = (—0.71, —1.32).

» The number of possible activation patterns is 27t = 1024.2

2So we must compute 1024 Grobner bases!
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Obtained Solutions:

Under the setting in the previous slide,
the ridge-regularized loss function for the RelLU neural network has:

» 1 one-dimensional solution set (in the interior of a partition), and

» 8 isolated local minima (on the boundary).

Observations:

» All isolated minima lie on the activation-pattern boundary...!

P> Ridge regularization does not necessarily make the minimizers isolated.
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Detected one-dimensional solution set:

A one-dimensional solution set of ¥ = (by1, b2, c1, c2) is specified by:

o 117(?(;1 >0 - 117([))(2)1 >0, 112[;11 +a >0, 11;;21 +e >0,
a-Bu<0 ©-Bx<0 q—%m, Cz—%<0,
T 0T
0= bi1+ Ric] + Rec/ S + Rac] + Raci S + Rsci 5 + Reci + Rrcacl -+ — Riocy,
0= bo1 + Ruicr e + Riaci 63 + Riscf o + Riaci ¢ + Riscic + Riscica - — Raoa,
0=cB+4c0c5 + Ro1cd +6¢c + Roocl 3 + Rozcl +4¢2CS + Rogcicy -+ — Rag

where Ry, Ro, .. ., Rso are complicated rational numbers.

A. Okuno Algebraic Approach to Optimize ReLU NN

23/28



Coefficients |

8061831845311915622677137119327762091177021647160801855468750
95
8

— N M < 10 O N~ 00

XX

-
3
3
24
62
4
28
A
72
7
28
4
44
§
013316707986280360512566917859374235786066042902773385983250592

24 /28

Algebraic Approach to Optimize ReLU NN

A. Okuno



Coefficients Il

45064070864732421779473258255362846673247907449 '
747515837259737976349533140846091509424078088125

13316707986280360512566917859374235786066042902773385983259592

9
3986185952593039040079422065453083833713933848669678031131169525

599152119487995315448496053126952456312807787539926712735352143

115504306250000

phar
(o)
J
o),
J
O
),
O
—
(o))
sty
0,
O,
(o8
[@
J

13192466118557752153125000
9238812

1
00
(N
(o]
o
O
(58
00
a1
(o))
]
O
(8
1
o1
(=]

0799719744535841949933618669

26384932237115504306250000
170757087686584669238812

329811652963943803828125

0976492929
6962890625 -

A. Okuno Algebraic Approach to Optimize ReLU NN

25/28



Towards the Future
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Remaining Challenges

» The computational cost is extremely large.
» Increasing the number of parameters = both per-pattern computation and parallel load
increase.
» Increasing the sample size = the number of activation patterns increases exponentially.

Algebraj
rrogate

Candidates in ®(E;)
Variable Projection [A,El (1,[}) < Candidates in I'(E;)
d)
_ fl (ll}) < Candidates in ®(E,) €sed)
E; le projection
f,‘{(a. B, C) - [3» ) 2 Candidates in ['(E,) prel

RR-MSE
Minimality
verification

? (II)) < Candidates in ®(E,nL)
4 EZ"L Candidates in I'(E )

» Future work includes parallelization and fast computation of Grobner bases for the
associated polynomial systems.
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A. Okuno

arXiv:2508.17783

Please feel free to contact me: okuno®ism.ac.jp
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Overall Procedure

Algebraic
Surrogate
Candidates in ®(E;)
Variable Projection fl,El ('(IJ) < Candidates in I'(E;)
Candidates in ®(E,) (Reversed)
= L < 2 . -
t’,l(a, B, C) - 51(1/)) A1z (1!1) Candidates in I'(E;) Vcrlab—;-e prOJec:fl-lon *
3
RR-MSE (RIS : : ¥Y'—0'—0
. Minimality
verification

Candidates in ®(E,n.)
a5, ) < ones

Candidates in ['(En)

\ J | J \ J

i
Preparation Computational Algebra Merge
(Section 2) (Section 3)

» Enumerating interior local minimizers (candidates) is relatively straightforward.

» Boundary solutions, however, are much more subtle.
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Detailed Setup and Simplifying Assumptions

» For simplicity, restrict attention to a network with Q = 1 hidden layer:3
fN(x) =[a, ReLU(Bx + )], 6=(a, B,c),
where the number of units is L (a, c € R, B € REX9).
» Eliminate a in advance. Define 9 = (B, ¢) and consider
n
O\(¥) = min {Z(y/ — fa(xi))? + >\|9||§} :
i=1

» The minimizer in a is given analytically (ridge regression), so £x(¢) becomes a rational
function. We therefore minimize £5 (%) algebraically.

3The essential ideas extend to general depth.
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Activation Patterns and Partitioning of Parameter Space

» Consider a dataset {(x;, yi)}7;.
» Define &ig(¥) = [ be, xi] + ¢ and

)T if&e(v) >0,
cie = (V) = {—1 if £i(¥) < 0.
(We now use %1 instead of {0, 1} for convenience.)
> Then o+ 1
ReLU(Ee(¥)) = ~5— &u(¥).

» Define the region of parameters yielding activation pattern E:

V(E)={y eV |&q(P)ep >0, Vi L}
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Function Decomposition and Surrogate Losses
» Our true objective is to minimize £x ().

» Partition parameter space into W(E;), W(Ez), ... based on activation patterns. In each
region, £x(¢¥) equals a surrogate £y £(¢) consistent with pattern E.

R3-MSE Algebraic surrogates (Rational)
|
‘ ‘ ' Af | ’
€5, ) 6, ) PYAC) a6, ()
H @)

[eIoN

» The solutions (especially, interior points of each region) of # = 0 can be obtained

by computational algebra.
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Visualization of Local Minima

» Despite ridge regularization, an entire 1-dimensional solution set appears.
> All isolated points turned out to lie on boundaries.
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