

Algebraic Approach to Ridge-Regularized Mean Squared Error Minimization in Minimal ReLU Neural Network (arXiv:2508.17783; with R. Fukasaku, Y. Kabata)

Akifumi Okuno^{1,2,3}

¹Inst. Stat. Math., ²SOKENDAI, ³RIKEN (AIP/CBS)

<https://okuno.net/slides/2026-02-ISM-ISI-ISSAS.pdf>

What is Computational Algebra?

- $f_1, \dots, f_r \in \mathbb{R}[\psi]$ are real polynomials (e.g., $f_1(\psi) = \psi_1^2\psi_3 + 2\psi_2 - 1$).

Roughly speaking, computational algebra can solve simultaneous *polynomial* equation¹:

$$f_1(\psi) = 0, f_2(\psi) = 0, \dots, f_r(\psi) = 0.$$

$$f1[\psi1_, \psi2_] := \psi1^2 - 2 \psi2^2;$$

$$f2[\psi1_, \psi2_] := \psi1^2 + 3 \psi2;$$

Solve[{f1[\psi1, \psi2] == 0, f2[\psi1, \psi2] == 0}, {\psi1, \psi2}]

|解<

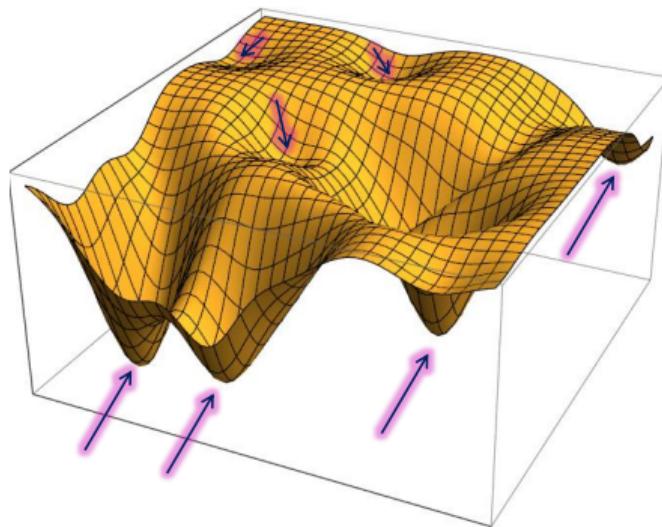
$$\left\{ \{\psi1 \rightarrow 0, \psi2 \rightarrow 0\}, \left\{ \psi1 \rightarrow -\frac{3}{\sqrt{2}}, \psi2 \rightarrow -\frac{3}{2} \right\}, \left\{ \psi1 \rightarrow \frac{3}{\sqrt{2}}, \psi2 \rightarrow -\frac{3}{2} \right\} \right\}$$

Figure: A popular example: Mathematica

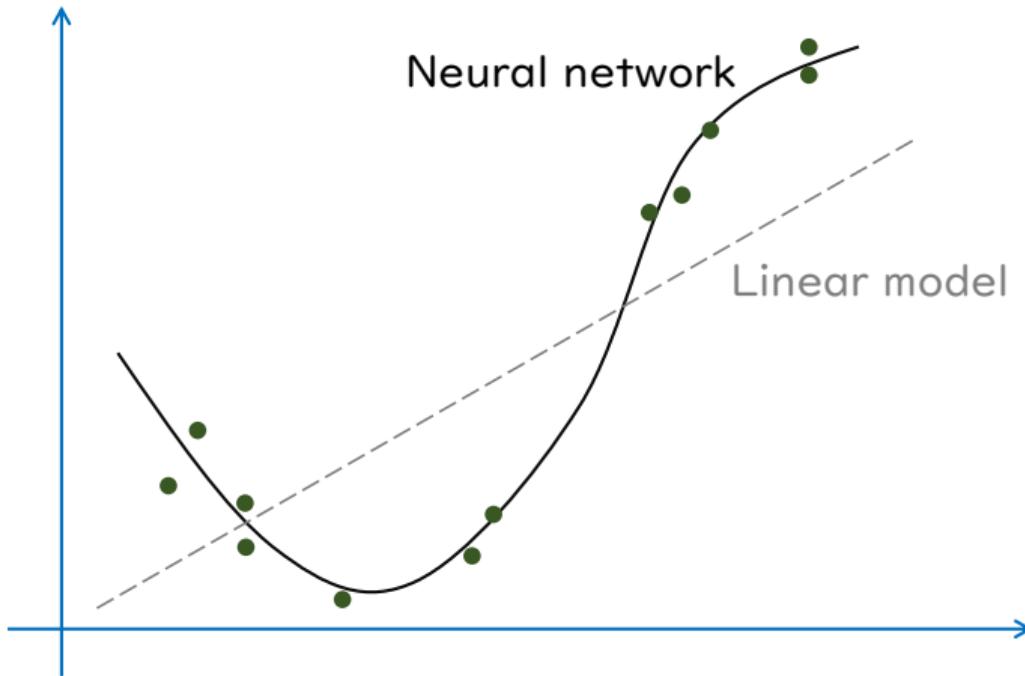
¹It provides a simpler form of the affine variety $\mathbb{V}(f_1, \dots, f_r) = \{\psi \in \Psi \mid f_1(\psi) = \dots = f_r(\psi) = 0\}$

In This Study... Overview

- ▶ Using computational algebra, we enumerate all the local minima of the ReLU neural network loss functions.
(Fukasaku, Kabata, and Okuno; arXiv:2508.17783)



Foundations and Challenges of Neural Networks



Neural networks are flexible nonlinear predictive models.

Definition of Neural Networks

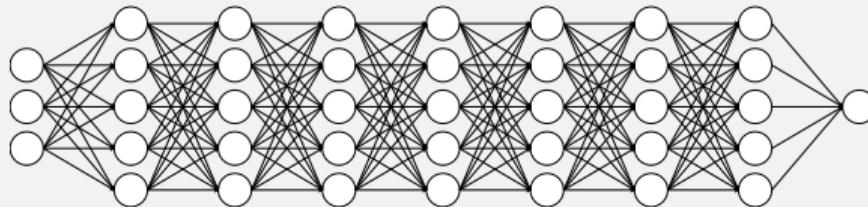
- ▶ **Linear regression model:**

$$f_{\theta}^{\text{LM}}(x) = Wx + b$$

- ▶ **Neural network** (whose special case is the perceptron):

$$f_{\theta}^{\text{NN}}(x) = W^{(Q+1)}\sigma\left(W^{(Q)}\sigma\left(\cdots\sigma\left(W^{(1)}x + b^{(1)}\right)\cdots\right) + b^{(Q)}\right) + b^{(Q+1)}.$$

- ▶ σ is the activation function, applied elementwise (e.g., $1/(1 + \exp(-z))$) or $\text{ReLU}(z) = \max\{0, z\}$).
- ▶ Many other architectures exist beyond this form.
- ▶ When the number of layers Q is large, we refer to it as a deep neural network.
- ▶ NN has *universal approximation capability*.



A Wide Variety of Applications

(Generated by ChatGPT)

Image
Recognition

Speech
Recognition

Natural
Language
Processing

Reinforcement
Learning

AI for
Science

Anomaly
Detection

Recommendation
Systems

Autonomous
Driving

Generative
Models

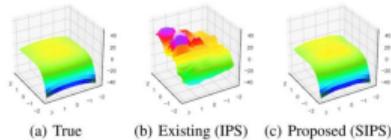
Medical
Diagnosis

Finance /
Forecasting

Robotics /
Control

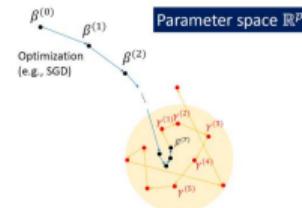
...But Reality Is Not That Simple

- ▶ From the viewpoint of statistical science, many essential issues remain unresolved.



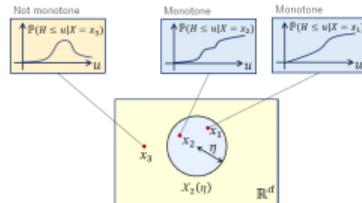
More Expressive Siamese NN

[Okuno et al. \(AISTATS2019\)](#)



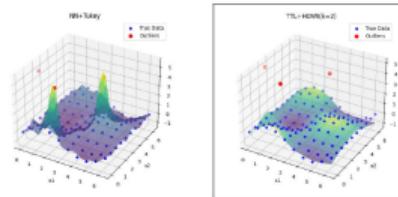
WAIC + Overparameterized NN
+ Langevin dynamics

[Okuno and Yano \(JCGS2023\)](#)



NN + Ordinal Regression

[Okuno and Harada \(JCGS2024\)](#)



NN + Variation Regularization

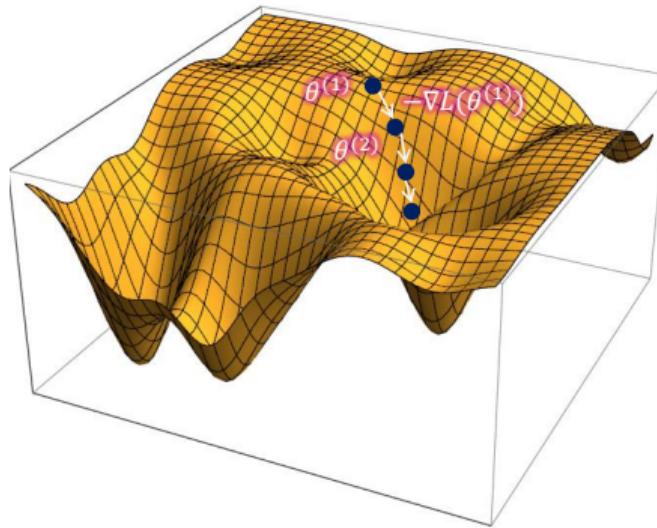
[Okuno and Yagishita \(in revision\)](#)

Despite substantial progress, the theoretical picture remains unclear.

Core Difficulties: The Loss Landscape Is Extremely Bumpy

- ▶ Gradient descent update:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma \nabla L(\theta^{(t)}).$$

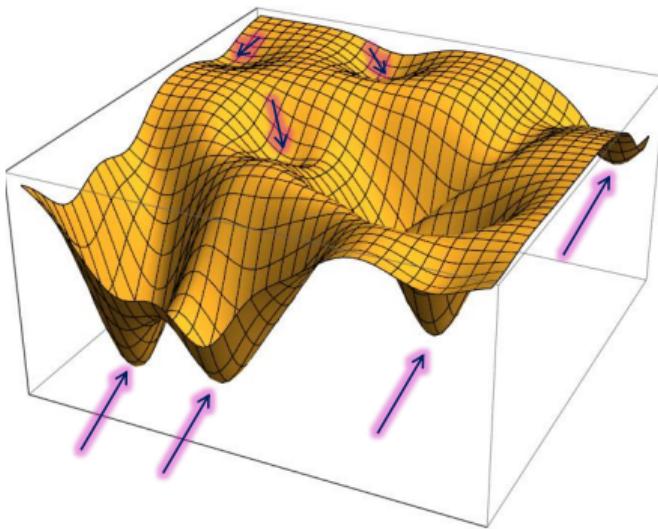


- ▶ For concave (single-valley) functions, many theoretical guarantees exist.
- ▶ For multimodal loss, the convergence limit depends on initial parameter.
- ▶ We can't know: how many solutions? are they isolated?

Goals and Starting Points

What We Ultimately Want to Do

We want to *enumerate all local minima* of the loss function.



- ▶ How many solutions?
- ▶ Are they isolated? or form high-dimensional solution sets?
- ▶ We leverage computational algebra to list all the solutions!

Algebraic Representation of ReLU Activation

The ReLU activation $\sigma(z) = \max\{0, z\}$ can be expressed via activation patterns.

For fixed $W \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, and $x \in \mathbb{R}^d$, there exists $e = e(W, b, x) \in \{0, 1\}^m$ such that

$$\text{ReLU}(Wx + b) = \text{diag}(e)(Wx + b),$$

where $\text{diag}(e)$ is the diagonal matrix with diagonal entries e .

- ▶ Example: If $Wx + b = (3, -2, 2, 1, -1)$, then $e = (1, 0, 1, 1, 0)$ and

$$\text{ReLU}(Wx + b) = (3, 0, 2, 1, 0) = \text{diag}(e)(Wx + b).$$

- ▶ Arora et al. (2018), Pilanci and Ergen (2020), Mishkin et al. (2022), etc.

Generalization to Multi-layer Networks

For parameters $\theta = (W^{(\ell)}, b^{(\ell)})_{\ell=1}^L$ and fixed input $x \in \mathbb{R}^d$, each layer $\ell = 1, \dots, L$ has an activation pattern $e^{(\ell)} = e^{(\ell)}(\theta, x) \in \{0, 1\}^{m_\ell}$ such that

$$f_{\theta, E}^{\text{NN}}(x) = W^{(Q+1)} \text{diag}(e^{(Q)}) \left\{ W^{(Q)} \text{diag}(e^{(Q-1)}) \{ \dots \right.$$
$$\left. \dots \text{diag}(e^{(1)})(W^{(1)}x + b^{(1)}) \dots \} + b^{(Q)} \right\} + b^{(Q+1)}.$$

- ▶ If $E = (e^{(\ell)})$ is fixed, the ReLU network reduces to matrix product.
- ▶ The loss

$$\ell_{\lambda, E}(\theta) = \sum_{i=1}^n \{y_i - f_{\theta, E}^{\text{NN}}(x_i)\}^2 + \lambda \|\theta\|_2^2$$

becomes a polynomial in the parameters.

Our Basic Idea

- ▶ The loss $\ell_{\lambda, E}(\theta)$ is a polynomial in θ .
- ▶ Its minimizer should satisfy the estimating equation:

$$\frac{\partial \ell_{\lambda, E}(\theta)}{\partial \theta} = 0,$$

which is also a polynomial system.

- ▶ This is precisely the type of problem addressed by computational algebra.

Our Work (Fukasaku, Kabata, and Okuno; arXiv:2508.17783)

So in Principle...

$$\frac{\partial \ell_{\lambda, E}(\theta)}{\partial \theta} = \frac{\partial \left\{ \sum_{i=1}^n (y_i - f_{\theta, E}(x_i))^2 + \lambda \|\theta\|_2^2 \right\}}{\partial \theta} = 0$$

If we could simply solve this equation, everything would be resolved...

But, things are not so easy in practice...

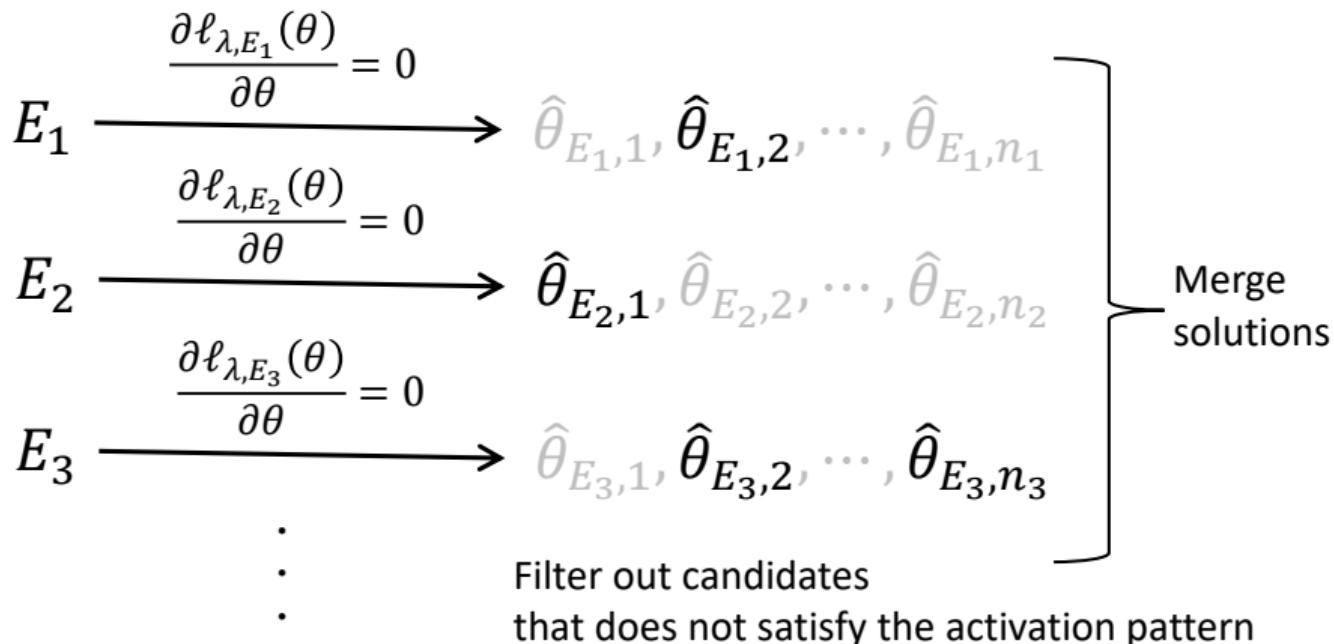
Difficulties

Activation pattern $E \xrightarrow{\frac{\partial \ell_{\lambda, E}(\theta)}{\partial \theta} = 0} \hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_n$ Solution candidates

Problem:

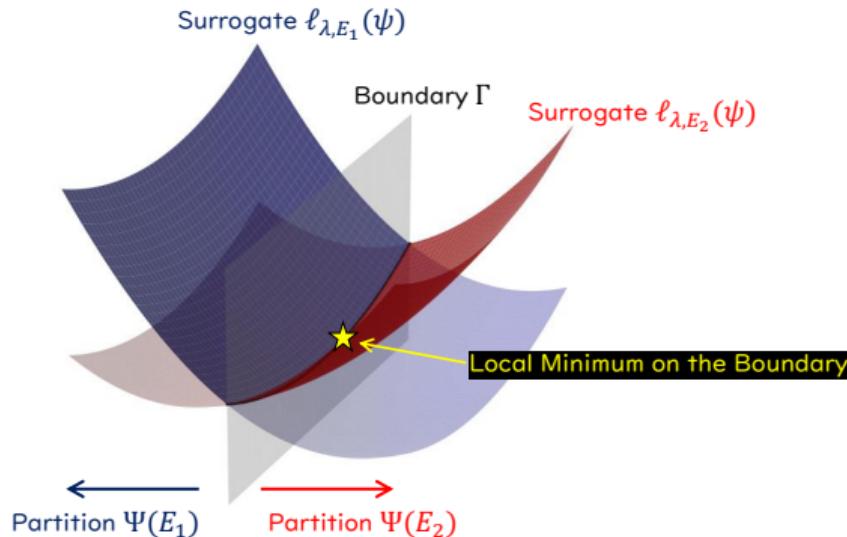
Solutions does not necessarily correspond to the activation pattern E

Our strategy



Why Boundary Solutions Are Difficult

- ▶ For neighboring activation patterns $E_1, E_2 \in \{-1, +1\}^{n \times L}$, the surrogate losses ℓ_{λ, E_1} and ℓ_{λ, E_2} may each have minimizers *on the shared boundary*.



- ▶ Across the full space Ψ , neither surrogate may produce local minima. Yet *on the boundary*, switching between the surrogates can create new local minima.

Local Minima on the Boundary

- ▶ A point ψ lies on a boundary if $\xi_{i\ell}(\psi) = [\![b_\ell, x_i]\!] + c_\ell = 0$ for some (i, ℓ) .
- ▶ Solve the Lagrange multiplier system:

$$\frac{\partial}{\partial \psi} \{ \ell_{\lambda, E}(\psi) + \beta \xi_{i\ell}(\psi) \} = 0$$

which is a system of rational equations.

FKO (arXiv:2508.17783) Theorem 2

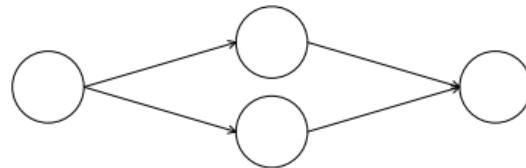
Any local minimum of ℓ_λ is either

- (1) an interior local minimizer of some region $\Psi(E)$, or
- (2) a local minimizer on a boundary between regions.

- ▶ Hence all local minima arise as solutions of polynomial (or rational) equations.

A Concrete Example

- ▶ Input dimension $d = 1$, number of units $L = 2$, sample size $n = 5$.



$$(x_1, y_1) = (-0.17, 0.05), \quad (x_2, y_2) = (0.44, 1.02), \quad (x_3, y_3) = (-1.00, 0.61), \\ (x_4, y_4) = (-0.40, -0.36), \quad (x_5, y_5) = (-0.71, -1.32).$$

- ▶ The number of possible activation patterns is $2^{nL} = 1024$.²

²So we must compute 1024 Gröbner bases!

Obtained Solutions:

Under the setting in the previous slide,
the ridge-regularized loss function for the ReLU neural network has:

- ▶ 1 one-dimensional solution set (in the interior of a partition), and
- ▶ 8 isolated local minima (on the boundary).

Observations:

- ▶ All isolated minima lie on the activation-pattern boundary...!
- ▶ Ridge regularization does not necessarily make the minimizers isolated.

Detected one-dimensional solution set:

A one-dimensional solution set of $\psi = (b_{11}, b_{12}, c_1, c_2)$ is specified by:

$$c_1 - \frac{17b_{11}}{100} > 0, \quad c_2 - \frac{17b_{21}}{100} > 0, \quad \frac{11b_{11}}{25} + c_1 > 0, \quad \frac{11b_{21}}{25} + c_2 > 0,$$

$$c_1 - B_{11} < 0, \quad c_2 - B_{21} < 0, \quad c_1 - \frac{2b_{11}}{5} < 0, \quad c_2 - \frac{2b_{21}}{5} < 0,$$

$$c_1 - \frac{71b_{11}}{100} < 0 \quad c_2 - \frac{71b_{21}}{100} < 0,$$

$$0 = b_{11} + R_1 c_1^7 + R_2 c_1^5 c_2^2 + R_3 c_1^5 + R_4 c_1^3 c_2^4 + R_5 c_1^3 c_2^2 + R_6 c_1^3 + R_7 c_1 c_2^6 \cdots - R_{10} c_1,$$

$$0 = b_{21} + R_{11} c_1^6 c_2 + R_{12} c_1^4 c_2^3 + R_{13} c_1^4 c_2 + R_{14} c_1^2 c_2^5 + R_{15} c_1^2 c_2^3 + R_{16} c_1^2 c_2 \cdots - R_{20} c_2,$$

$$0 = c_1^8 + 4c_1^6 c_2^2 + R_{21} c_1^6 + 6c_1^4 c_2^4 + R_{22} c_1^4 c_2^2 + R_{23} c_1^4 + 4c_1^2 c_2^6 + R_{24} c_1^2 c_2^4 \cdots - R_{30},$$

where R_1, R_2, \dots, R_{30} are complicated rational numbers.

Coefficients I

$$\begin{aligned}R_1 &= \frac{8061831845311915622677137119327762091177021647160801855468750}{799152119487995315448496053126952456312807787539926712735352143}, \\R_2 &= \frac{24185495535935746868031411357983286273531064941482405566406250}{799152119487995315448496053126952456312807787539926712735352143}, \\R_3 &= \frac{16592903810388605869109122181308724918558592156970414314140625}{114164588498285045064070864732421779473258255362846673247907449}, \\R_4 &= \frac{24185495535935746868031411357983286273531064941482405566406250}{799152119487995315448496053126952456312807787539926712735352143}, \\R_5 &= \frac{33185807620777211738218244362617449837117184313940828628281250}{114164588498285045064070864732421779473258255362846673247907449}, \\R_6 &= \frac{3631820373341883747515837259737976349533140846091509424078088125}{913316707986280360512566917859374235786066042902773385983259592}, \\R_7 &= \frac{8061831845311915622677137119327762091177021647160801855468750}{799152119487995315448496053126952456312807787539926712735352143}, \\R_8 &= \frac{16592903810388605869109122181308724918558592156970414314140625}{114164588498285045064070864732421779473258255362846673247907449}, \\R_9 &= \frac{3631820373341883747515837259737976349533140846091509424078088125}{913316707986280360512566917859374235786066042902773385983259592}, \\R_{10} &= \frac{3986185952593039040079422065453083833713933848669678031131169525}{799152119487995315448496053126952456312807787539926712735352143}, \\R_{11} &= \frac{8061831845311915622677137119327762091177021647160801855468750}{799152119487995315448496053126952456312807787539926712735352143}, \\R_{12} &= \frac{24185495535935746868031411357983286273531064941482405566406250}{799152119487995315448496053126952456312807787539926712735352143}, \\R_{13} &= \frac{16592903810388605869109122181308724918558592156970414314140625}{114164588498285045064070864732421779473258255362846673247907449}, \\R_{14} &= \frac{24185495535935746868031411357983286273531064941482405566406250}{799152119487995315448496053126952456312807787539926712735352143}, \\R_{15} &= \frac{33185807620777211738218244362617449837117184313940828628281250}{114164588498285045064070864732421779473258255362846673247907449}, \\R_{16} &= \frac{3631820373341883747515837259737976349533140846091509424078088125}{913316707986280360512566917859374235786066042902773385983259592},\end{aligned}$$

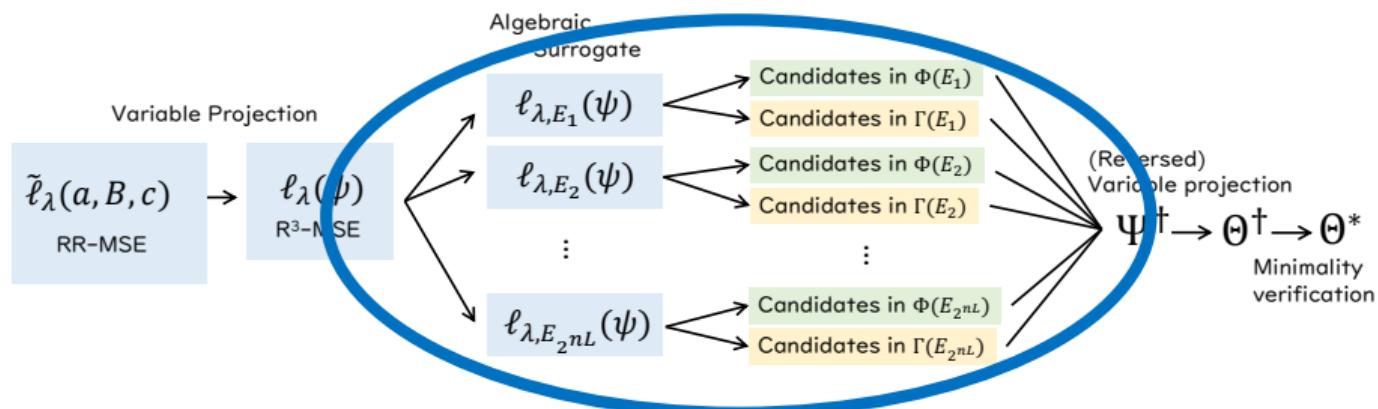
Coefficients II

$$\begin{aligned}R_{17} &= \frac{8061831845311915622677137119327762091177021647160801855468750}{799152119487995315448496053126952456312807787539926712735352143}, \\R_{18} &= \frac{16592903810388605869109122181308724918558592156970414314140625}{114164588498285045064070864732421779473258255362846673247907449}, \\R_{19} &= \frac{3631820373341883747515837259737976349533140846091509424078088125}{913316707986280360512566917859374235786066042902773385983259592}, \\R_{20} &= \frac{3986185952593039040079422065453083833713933848669678031131169525}{799152119487995315448496053126952456312807787539926712735352143}, \\R_{21} &= \frac{91676796916186307}{5836063856703750}, \\R_{22} &= \frac{91676796916186307}{1945354618901250}, \\R_{23} &= \frac{10799719744535841949933618669}{26384932237115504306250000}, \\R_{24} &= \frac{91676796916186307}{1945354618901250}, \\R_{25} &= \frac{10799719744535841949933618669}{13192466118557752153125000}, \\R_{26} &= \frac{1170757087686584669238812}{329811652963943803828125}, \\R_{27} &= \frac{91676796916186307}{5836063856703750}, \\R_{28} &= \frac{10799719744535841949933618669}{26384932237115504306250000}, \\R_{29} &= \frac{1170757087686584669238812}{329811652963943803828125}, \\R_{30} &= \frac{1687032323955370090976492929}{1030661415512324386962890625}.\end{aligned}$$

Towards the Future

Remaining Challenges

- ▶ The computational cost is extremely large.
 - ▶ Increasing the number of parameters \Rightarrow both per-pattern computation and parallel load increase.
 - ▶ Increasing the sample size \Rightarrow the number of activation patterns increases exponentially.



- ▶ Future work includes parallelization and fast computation of Gröbner bases for the associated polynomial systems.

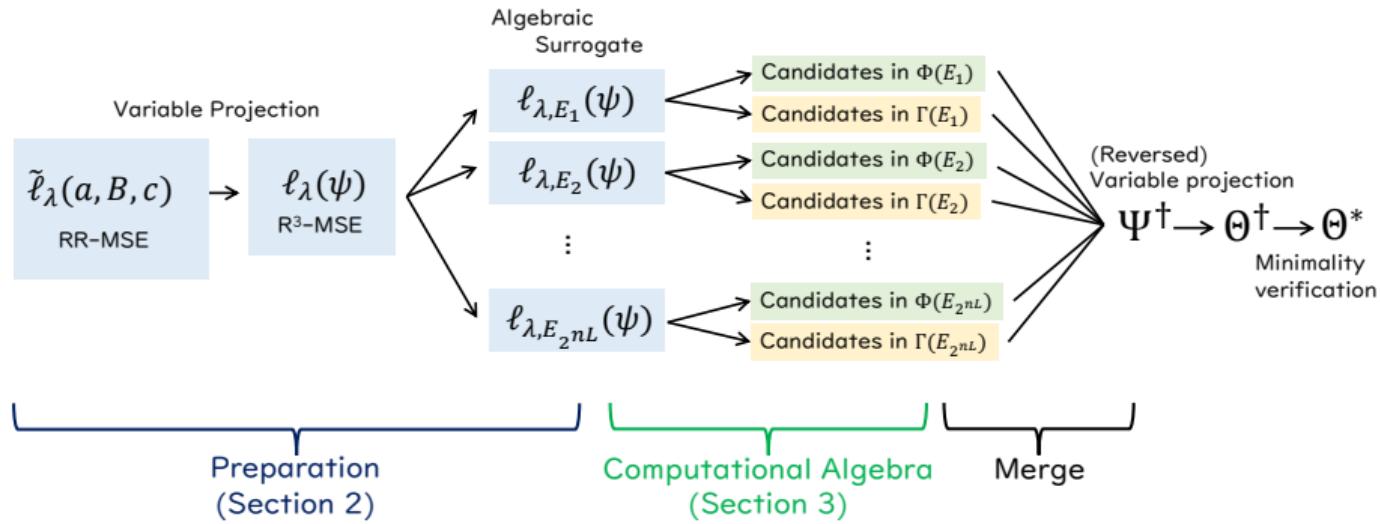
arXiv:2508.17783

Please feel free to contact me: okuno@ism.ac.jp

<https://okuno.net/slides/2026-02-ISM-IFI-ISSAS.pdf>

Details

Overall Procedure



- ▶ Enumerating interior local minimizers (candidates) is relatively straightforward.
- ▶ Boundary solutions, however, are much more subtle.

Detailed Setup and Simplifying Assumptions

- ▶ For simplicity, restrict attention to a network with $Q = 1$ hidden layer:³

$$f_{\theta}^{\text{NN}}(x) = [\![a, \text{ReLU}(Bx + c)]\!], \quad \theta = (a, B, c),$$

where the number of units is L ($a, c \in \mathbb{R}^L$, $B \in \mathbb{R}^{L \times d}$).

- ▶ Eliminate a in advance. Define $\psi = (B, c)$ and consider

$$\ell_{\lambda}(\psi) = \min_a \left\{ \sum_{i=1}^n (y_i - f_{\theta}(x_i))^2 + \lambda \|\theta\|_2^2 \right\}.$$

- ▶ The minimizer in a is given analytically (ridge regression), so $\ell_{\lambda}(\psi)$ becomes a rational function. We therefore minimize $\ell_{\lambda}(\psi)$ algebraically.

³The essential ideas extend to general depth.

Activation Patterns and Partitioning of Parameter Space

- ▶ Consider a dataset $\{(x_i, y_i)\}_{i=1}^n$.
- ▶ Define $\xi_{i\ell}(\psi) = [\lfloor b_\ell, x_i \rfloor] + c_\ell$ and

$$e_{i\ell} = e_{i\ell}(\psi) = \begin{cases} 1 & \text{if } \xi_{i\ell}(\psi) \geq 0, \\ -1 & \text{if } \xi_{i\ell}(\psi) < 0. \end{cases}$$

(We now use ± 1 instead of $\{0, 1\}$ for convenience.)

- ▶ Then

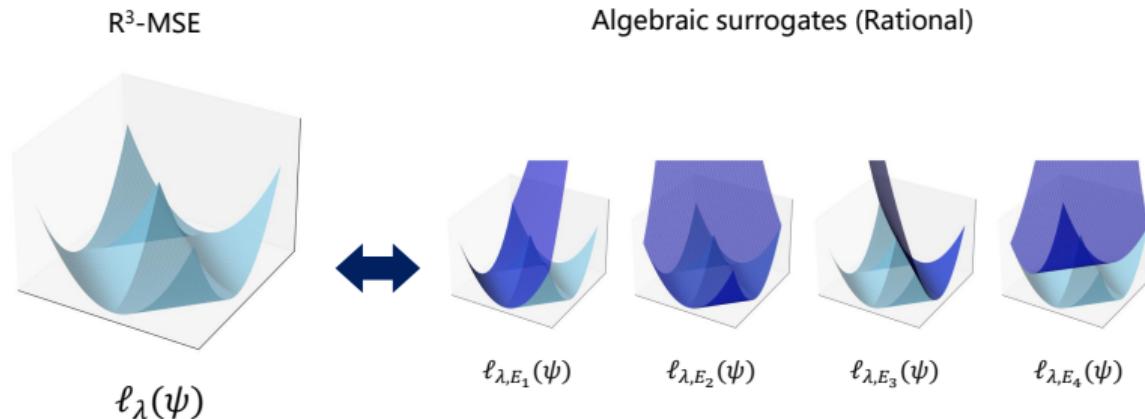
$$\text{ReLU}(\xi_{i\ell}(\psi)) = \frac{e_{i\ell} + 1}{2} \xi_{i\ell}(\psi).$$

- ▶ Define the region of parameters yielding activation pattern E :

$$\Psi(E) = \{\psi \in \Psi \mid \xi_{i\ell}(\psi) e_{i\ell} \geq 0, \forall i, \ell\}.$$

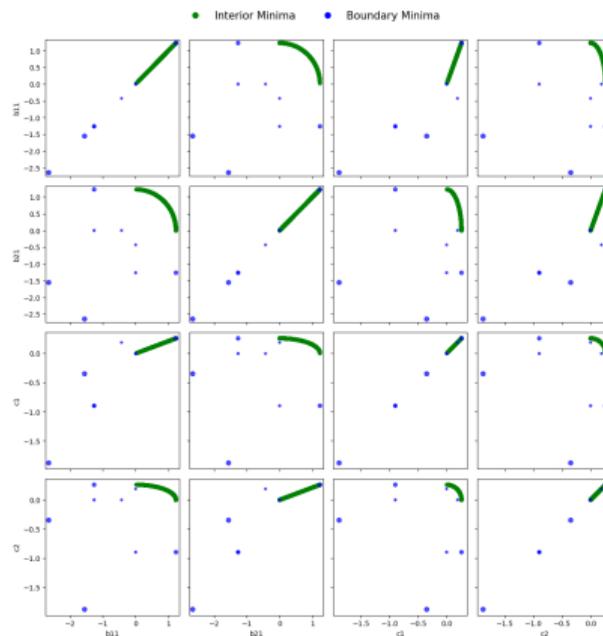
Function Decomposition and Surrogate Losses

- Our true objective is to minimize $\ell_\lambda(\psi)$.
- Partition parameter space into $\Psi(E_1), \Psi(E_2), \dots$ based on activation patterns. In each region, $\ell_\lambda(\psi)$ equals a surrogate $\ell_{\lambda,E}(\psi)$ consistent with pattern E .



- The solutions (especially, interior points of each region) of $\frac{\partial \ell_{\lambda,E}(\psi)}{\partial \psi} = 0$ can be obtained by computational algebra.

Visualization of Local Minima



- ▶ Despite ridge regularization, an entire 1-dimensional solution set appears.
- ▶ All isolated points turned out to lie on boundaries.