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What is Computational Algebra?
▶ f1, . . . , fr ∈ R[ψ] are real polynomials (e.g., f1(ψ) = ψ2

1ψ3 + 2ψ2 − 1).

Roughly speaking, computational algebra can solve simultaneous polynomial equation1:

f1(ψ) = 0, f2(ψ) = 0, · · · , fr (ψ) = 0.

Figure: A popular example: Mathematica

1It provides a simpler form of the affine variety V(f1, . . . , fr ) = {ψ ∈ Ψ | f1(ψ) = · · · = fr (ψ) = 0}
A. Okuno Algebraic Approach to Optimize ReLU NN 2 / 28



In This Study... Overview

▶ Using computational algebra, we enumerate all the local minima of the ReLU neural
network loss functions.
(Fukasaku, Kabata, and Okuno; arXiv:2508.17783)
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Foundations and Challenges of Neural Networks
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Linear model

Neural network

Neural networks are flexible nonlinear predictive models.
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Definition of Neural Networks
▶ Linear regression model:

f LM
θ (x) = Wx + b

▶ Neural network (whose special case is the perceptron):

f NN
θ (x) = W (Q+1)σ

(
W (Q)σ

(
· · ·σ

(
W (1)x + b(1)

)
· · ·

)
+ b(Q)

)
+ b(Q+1).

▶ σ is the activation function, applied elementwise (e.g., 1/(1 + exp(−z)) or
ReLU(z) = max{0, z}).

▶ Many other architectures exist beyond this form.
▶ When the number of layers Q is large, we refer to it as a deep neural network.
▶ NN has universal approximation capability.
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A Wide Variety of Applications

(Generated by ChatGPT)
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...But Reality Is Not That Simple
▶ From the viewpoint of statistical science, many essential issues remain unresolved.

Okuno et al. (AISTATS2019) Okuno and Yano (JCGS2023)

Okuno and Yagishita (in revision)Okuno and Harada (JCGS2024)

More Expressive Siamese NN
WAIC + Overparameterized NN 

   + Langevin dynamics

NN + Ordinal Regression NN + Variation Regularization

Despite substantial progress, the theoretical picture remains unclear.
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Core Difficulties: The Loss Landscape Is Extremely Bumpy
▶ Gradient descent update:

θ(t+1) ← θ(t) − γ∇L(θ(t)).

𝜃(1)

𝜃(2)

−∇𝐿(𝜃 1 )

▶ For concave (single-valley) functions, many theoretical guarantees exist.
▶ For multimodal loss, the convergence limit depends on initial parameter.
▶ We can’t know: how many solutions? are they isolated?
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Goals and Starting Points
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What We Ultimately Want to Do

We want to enumerate all local minima of the loss function.

▶ How many solutions?
▶ Are they isolated? or form high-dimensional solution sets?
▶ We leverage computational algebra to list all the solutions!
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Algebraic Representation of ReLU Activation

The ReLU activation σ(z) = max{0, z} can be expressed via activation patterns.

For fixed W ∈ Rm×d , b ∈ Rm, and x ∈ Rd , there exists e = e(W , b, x) ∈ {0, 1}m such that

ReLU(Wx + b) = diag(e)(Wx + b),

where diag(e) is the diagonal matrix with diagonal entries e.

▶ Example: If Wx + b = (3,−2, 2, 1,−1), then e = (1, 0, 1, 1, 0) and

ReLU(Wx + b) = (3, 0, 2, 1, 0) = diag(e)(Wx + b).

▶ Arora et al. (2018), Pilanci and Ergen (2020), Mishkin et al. (2022), etc.
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Generalization to Multi-layer Networks

For parameters θ = (W (ℓ), b(ℓ))Lℓ=1 and fixed input x ∈ Rd , each layer ℓ = 1, . . . ,L has an
activation pattern e(ℓ) = e(ℓ)(θ, x) ∈ {0, 1}mℓ such that

f NN
θ,E (x) = W (Q+1)diag(e(Q))

{
W (Q)diag(e(Q−1)){· · ·

· · · diag(e(1))(W (1)x + b(1)) · · · }+ b(Q)
}
+ b(Q+1).

▶ If E = (e(ℓ)) is fixed, the ReLU network reduces to matrix product.
▶ The loss

ℓλ,E (θ) =

n∑
i=1

{yi − f NN
θ,E (xi)}2 + λ∥θ∥22

becomes a polynomial in the parameters.
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Our Basic Idea

▶ The loss ℓλ,E (θ) is a polynomial in θ.
▶ Its minimizer should satisfy the estimating equation:

∂ℓλ,E (θ)

∂θ
= 0,

which is also a polynomial system.
▶ This is precisely the type of problem addressed by computational algebra.
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Our Work (Fukasaku, Kabata, and Okuno; arXiv:2508.17783)
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So in Principle...

∂ℓλ,E (θ)

∂θ
=
∂
{∑n

i=1(yi − fθ,E (xi))
2 + λ∥θ∥22

}
∂θ

= 0

If we could simply solve this equation, everything would be resolved…

But, things are not so easy in practice...
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Difficulties

෠𝜃1, ෠𝜃2, ⋯ , ෠𝜃𝑛𝐸

𝜕ℓ𝜆,𝐸 𝜃

𝜕𝜃
= 0

Activation pattern Solution candidates

?
Problem: 
Solutions does not necessarily correspond to the activation pattern 𝐸
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Our strategy

෠𝜃𝐸1,1,
෠𝜃𝐸1,2, ⋯ , ෠𝜃𝐸1,𝑛1𝐸1

𝜕ℓ𝜆,𝐸1 𝜃

𝜕𝜃
= 0

෠𝜃𝐸2,1,
෠𝜃𝐸2,2, ⋯ , ෠𝜃𝐸2,𝑛2𝐸2

𝜕ℓ𝜆,𝐸2 𝜃

𝜕𝜃
= 0

෠𝜃𝐸3,1,
෠𝜃𝐸3,2, ⋯ , ෠𝜃𝐸3,𝑛3𝐸3

𝜕ℓ𝜆,𝐸3 𝜃

𝜕𝜃
= 0

Filter out candidates 
that does not satisfy the activation pattern

・
・
・

Merge
solutions
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Why Boundary Solutions Are Difficult
▶ For neighboring activation patterns E1,E2 ∈ {−1,+1}n×L, the surrogate losses ℓλ,E1

and ℓλ,E2 may each have minimizers on the shared boundary.

Boundary Γ

Surrogate ℓ𝜆,𝐸1(𝜓)

Surrogate ℓ𝜆,𝐸2(𝜓)

Partition Ψ(𝐸1) Partition Ψ(𝐸2)

Local Minimum on the Boundary

▶ Across the full space Ψ, neither surrogate may produce local minima. Yet on the
boundary, switching between the surrogates can create new local minima.
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Local Minima on the Boundary

▶ A point ψ lies on a boundary if ξiℓ(ψ) = J bℓ , xi K + cℓ = 0 for some (i , ℓ).
▶ Solve the Lagrange multiplier system:

∂

∂ψ
{ℓλ,E (ψ) + β ξiℓ(ψ)} = 0

which is a system of rational equations.

FKO (arXiv:2508.17783) Theorem 2
Any local minimum of ℓλ is either

(1) an interior local minimizer of some region Ψ(E ), or

(2) a local minimizer on a boundary between regions.

▶ Hence all local minima arise as solutions of polynomial (or rational) equations.
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A Concrete Example

▶ Input dimension d = 1, number of units L = 2, sample size n = 5.

(x1, y1) = (−0.17, 0.05), (x2, y2) = (0.44, 1.02), (x3, y3) = (−1.00, 0.61),

(x4, y4) = (−0.40, −0.36), (x5, y5) = (−0.71, −1.32).

▶ The number of possible activation patterns is 2nL = 1024.2

2So we must compute 1024 Gröbner bases!
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Obtained Solutions:

Under the setting in the previous slide,
the ridge-regularized loss function for the ReLU neural network has:

▶ 1 one-dimensional solution set (in the interior of a partition), and
▶ 8 isolated local minima (on the boundary).

Observations:
▶ All isolated minima lie on the activation-pattern boundary...!
▶ Ridge regularization does not necessarily make the minimizers isolated.
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Detected one-dimensional solution set:

A one-dimensional solution set of ψ = (b11, b12, c1, c2) is specified by:

c1 −
17b11

100
> 0, c2 −

17b21

100
> 0,

11b11

25
+ c1 > 0,

11b21

25
+ c2 > 0,

c1 − B11 < 0, c2 − B21 < 0, c1 −
2b11

5
< 0, c2 −

2b21

5
< 0,

c1 −
71b11

100
< 0 c2 −

71b21

100
< 0,

0 = b11 + R1c7
1 + R2c5

1c2
2 + R3c5

1 + R4c3
1c4

2 + R5c3
1c2

2 + R6c3
1 + R7c1c6

2 · · · − R10c1,

0 = b21 + R11c6
1c2 + R12c4

1c3
2 + R13c4

1c2 + R14c2
1c5

2 + R15c2
1c3

2 + R16c2
1c2 · · · − R20c2,

0 = c8
1 + 4c6

1c2
2 + R21c6

1 + 6c4
1c4

2 + R22c4
1c2

2 + R23c4
1 + 4c2

1c6
2 + R24c2

1c4
2 · · · − R30,

where R1,R2, . . . ,R30 are complicated rational numbers.
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Coefficients I
R1 = 8061831845311915622677137119327762091177021647160801855468750

799152119487995315448496053126952456312807787539926712735352143 ,

R2 = 24185495535935746868031411357983286273531064941482405566406250
799152119487995315448496053126952456312807787539926712735352143 ,

R3 = 16592903810388605869109122181308724918558592156970414314140625
114164588498285045064070864732421779473258255362846673247907449 ,

R4 = 24185495535935746868031411357983286273531064941482405566406250
799152119487995315448496053126952456312807787539926712735352143 ,

R5 = 33185807620777211738218244362617449837117184313940828628281250
114164588498285045064070864732421779473258255362846673247907449 ,

R6 = 3631820373341883747515837259737976349533140846091509424078088125
913316707986280360512566917859374235786066042902773385983259592 ,

R7 = 8061831845311915622677137119327762091177021647160801855468750
799152119487995315448496053126952456312807787539926712735352143 ,

R8 = 16592903810388605869109122181308724918558592156970414314140625
114164588498285045064070864732421779473258255362846673247907449 ,

R9 = 3631820373341883747515837259737976349533140846091509424078088125
913316707986280360512566917859374235786066042902773385983259592 ,

R10 = 3986185952593039040079422065453083833713933848669678031131169525
799152119487995315448496053126952456312807787539926712735352143 ,

R11 = 8061831845311915622677137119327762091177021647160801855468750
799152119487995315448496053126952456312807787539926712735352143 ,

R12 = 24185495535935746868031411357983286273531064941482405566406250
799152119487995315448496053126952456312807787539926712735352143 ,

R13 = 16592903810388605869109122181308724918558592156970414314140625
114164588498285045064070864732421779473258255362846673247907449 ,

R14 = 24185495535935746868031411357983286273531064941482405566406250
799152119487995315448496053126952456312807787539926712735352143 ,

R15 = 33185807620777211738218244362617449837117184313940828628281250
114164588498285045064070864732421779473258255362846673247907449 ,

R16 = 3631820373341883747515837259737976349533140846091509424078088125
913316707986280360512566917859374235786066042902773385983259592 ,
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Coefficients II

R17 = 8061831845311915622677137119327762091177021647160801855468750
799152119487995315448496053126952456312807787539926712735352143 ,

R18 = 16592903810388605869109122181308724918558592156970414314140625
114164588498285045064070864732421779473258255362846673247907449 ,

R19 = 3631820373341883747515837259737976349533140846091509424078088125
913316707986280360512566917859374235786066042902773385983259592 ,

R20 = 3986185952593039040079422065453083833713933848669678031131169525
799152119487995315448496053126952456312807787539926712735352143 ,

R21 = 91676796916186307
5836063856703750 ,

R22 = 91676796916186307
1945354618901250 ,

R23 = 10799719744535841949933618669
26384932237115504306250000 ,

R24 = 91676796916186307
1945354618901250 ,

R25 = 10799719744535841949933618669
13192466118557752153125000 ,

R26 = 1170757087686584669238812
329811652963943803828125 ,

R27 = 91676796916186307
5836063856703750 ,

R28 = 10799719744535841949933618669
26384932237115504306250000 ,

R29 = 1170757087686584669238812
329811652963943803828125 ,

R30 = 1687032323955370090976492929
1030661415512324386962890625 .
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Towards the Future
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Remaining Challenges
▶ The computational cost is extremely large.

▶ Increasing the number of parameters ⇒ both per-pattern computation and parallel load
increase.

▶ Increasing the sample size ⇒ the number of activation patterns increases exponentially.

ℓ𝜆,𝐸1(𝜓)

ℓ𝜆,𝐸2(𝜓)

ℓ𝜆,𝐸
2𝑛𝐿

(𝜓)

Variable Projection

෨ℓ𝜆(𝑎, 𝐵, 𝑐)

RR-MSE

ℓ𝜆(𝜓)
R3-MSE

Algebraic 
Surrogate

…

Candidates in Φ(𝐸1)

Candidates in Γ(𝐸1)

Candidates in Φ(𝐸2)

Candidates in Γ(𝐸2)

Candidates in Φ(𝐸2𝑛𝐿)

Candidates in Γ(𝐸2𝑛𝐿)
… Ψ†

(Reversed)
Variable projection

Θ† Θ∗
Minimality
verification

▶ Future work includes parallelization and fast computation of Gröbner bases for the
associated polynomial systems.
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Details
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Overall Procedure

ℓ𝜆,𝐸1(𝜓)

ℓ𝜆,𝐸2(𝜓)

ℓ𝜆,𝐸
2𝑛𝐿

(𝜓)

Variable Projection

෨ℓ𝜆(𝑎, 𝐵, 𝑐)

RR-MSE

ℓ𝜆(𝜓)
R3-MSE

Algebraic 
Surrogate

…

Candidates in Φ(𝐸1)

Candidates in Γ(𝐸1)

Candidates in Φ(𝐸2)

Candidates in Γ(𝐸2)

Candidates in Φ(𝐸2𝑛𝐿)

Candidates in Γ(𝐸2𝑛𝐿)

…

Preparation
(Section 2)

Computational Algebra
(Section 3)

Ψ†

Merge

(Reversed)
Variable projection

Θ† Θ∗
Minimality
verification

▶ Enumerating interior local minimizers (candidates) is relatively straightforward.
▶ Boundary solutions, however, are much more subtle.
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Detailed Setup and Simplifying Assumptions

▶ For simplicity, restrict attention to a network with Q = 1 hidden layer:3

f NN
θ (x) = J a , ReLU(Bx + c) K , θ = (a,B, c),

where the number of units is L (a, c ∈ RL, B ∈ RL×d).

▶ Eliminate a in advance. Define ψ = (B, c) and consider

ℓλ(ψ) = min
a

{
n∑

i=1

(yi − fθ(xi))
2 + λ∥θ∥22

}
.

▶ The minimizer in a is given analytically (ridge regression), so ℓλ(ψ) becomes a rational
function. We therefore minimize ℓλ(ψ) algebraically.

3The essential ideas extend to general depth.
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Activation Patterns and Partitioning of Parameter Space

▶ Consider a dataset {(xi , yi)}ni=1.
▶ Define ξiℓ(ψ) = J bℓ , xi K + cℓ and

eiℓ = eiℓ(ψ) =

{
1 if ξiℓ(ψ) ≥ 0,

−1 if ξiℓ(ψ) < 0.

(We now use ±1 instead of {0, 1} for convenience.)
▶ Then

ReLU(ξiℓ(ψ)) =
eiℓ + 1

2
ξiℓ(ψ).

▶ Define the region of parameters yielding activation pattern E :

Ψ(E ) = {ψ ∈ Ψ | ξiℓ(ψ)eiℓ ≥ 0, ∀i , ℓ}.
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Function Decomposition and Surrogate Losses
▶ Our true objective is to minimize ℓλ(ψ).
▶ Partition parameter space into Ψ(E1),Ψ(E2), . . . based on activation patterns. In each

region, ℓλ(ψ) equals a surrogate ℓλ,E (ψ) consistent with pattern E .

ℓ𝜆(𝜓)
ℓ𝜆,𝐸1(𝜓) ℓ𝜆,𝐸2(𝜓) ℓ𝜆,𝐸3(𝜓) ℓ𝜆,𝐸4(𝜓)

R3-MSE Algebraic surrogates (Rational)

▶ The solutions (especially, interior points of each region) of ∂ℓλ,E (ψ)∂ψ = 0 can be obtained
by computational algebra.

A. Okuno Algebraic Approach to Optimize ReLU NN 5 / 6



Visualization of Local Minima

▶ Despite ridge regularization, an entire 1-dimensional solution set appears.
▶ All isolated points turned out to lie on boundaries.
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